Ecosystems

, Volume 18, Issue 3, pp 363–375 | Cite as

Integrating Landscape Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes

  • Paul C. Hanson
  • Michael L. Pace
  • Stephen R. Carpenter
  • Jonathan J. Cole
  • Emily H. Stanley
Article

Abstract

Based on empirical and synthetic research, lakes make, store, and mineralize organic carbon (OC) at rates that are significant and relevant to regional and global carbon budgets. Although some global-scale studies have examined specific processes such as carbon burial and CO2 exchange with the atmosphere, most studies of lake carbon cycling are from single systems, focus only on a specific habitat, and do not account for all of the major terms in OC budgets. Hence, most lake OC budgets are incomplete, leaving some key processes highly uncertain. To advance the analysis of the role of the inland waters in C-cycling, ecosystem science needs a new generation of studies that confront these shortcomings. Here we address research needs and priorities for improving OC budgets. We present ten key research questions and recommend a framework for essential ecosystem-scale studies of lake OC cycling. Answers to these ten questions will not only improve carbon budgets but also provide robust estimates of lake contributions to global and regional carbon cycling. In addition, studies of lake carbon budgets will provide relative autochthonous and allochthonous carbon fluxes, indicate sources and rates of carbon burial, improve quantification of lake-atmosphere carbon exchanges, better integrate lakes with terrestrial and lotic carbon dynamics, promote understanding of how climate and land-use change will impact lakes, and enable tests of ecological theory related to subsidies and food web stability.

Keywords

organic carbon lake budget reservoir ecosystem carbon cycling 

Notes

Acknowledgements

This work was supported by the following Grants from the National Science Foundation: DEB-0917696, IIS-1344272, DEB-1256119, and the NTL-LTER.

References

  1. Amon R, Benner R. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41:41–51. http://www.riversystems.washington.edu/lc/RIVERS/77_amon_rmw_41-41-51.pdf. Accessed 2 Sept 2014
  2. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nat Geosci 2:598–600.CrossRefGoogle Scholar
  3. Berggren M, Ziegler SE, St-Gelais NF, Beisner BE, del Giorgio PA. 2014. Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95:1947–59.Google Scholar
  4. Brett MT, Arhonditsis GB, Chandra S, Kainz MJ. 2012. Mass flux calculations show strong allochthonous support of freshwater zooplankton production is unlikely. PLoS ONE 7:e39508. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3383696&tool=pmcentrez&rendertype=abstract. Accessed 5 May 2014
  5. Cardoso SJ, Enrich-Prast A, Pace ML, Roland F. 2014. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol Oceanogr 59:48–54. http://www.aslo.org/lo/toc/vol_59/issue_1/0048.html. Accessed 27 Jan 2014
  6. Carpenter SR. 1998. The need for large-scale experiments to assess and predict the response of ecosystems to perturbation. In: Pace ML, Groffman PM, Eds. Successes, limitations, and frontiers in ecosystem science. New York: Springer. p 287–312.CrossRefGoogle Scholar
  7. Carpenter S, Ludwig D, Brock W. 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–71. doi: 10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2.CrossRefGoogle Scholar
  8. Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES. 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13 C addition to contrasting lakes. Ecology 86:2737–50. doi: 10.1890/04-1282.CrossRefGoogle Scholar
  9. Caverly E, Kaste JM, Hancock GS, Chambers RM. 2013. Dissolved and particulate organic carbon fluxes from an agricultural watershed during consecutive tropical storms. Geophys Res Lett 40:5147–52. doi: 10.1002/grl.50982.CrossRefGoogle Scholar
  10. Cole JJ. 2013. Freshwater ecosystems and the carbon cycle. In: Kinne O, Ed. Excellence in ecology. Book 18. Oldendorf/Luhe: International Ecology Institute. Google Scholar
  11. Cole J, Caraco N, Strayer D. 1989. A detailed organic carbon budget as an ecosystem-level calibration of bacterial respiration in an oligotrophic lake during midsummer. Limnol Oceanogr 34:286–96. http://www.aslo.org/lo/toc/vol_34/issue_2/0286.html. Accessed 6 Dec 2013
  12. Cole J, Caraco N, Kling G, Kratz T. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–70. http://www.sciencemag.org/content/265/5178/1568.short. Accessed 20 March 2012
  13. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–85. doi: 10.1007/s10021-006-9013-8.CrossRefGoogle Scholar
  14. Cole JJ, Carpenter SR, Kitchell J, Pace ML, Solomon CT, Weidel B. 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc Natl Acad Sci USA 108:1975–80. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3033307&tool=pmcentrez&rendertype=abstract. Accessed 27 July 2011
  15. Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535. doi:10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2.CrossRefGoogle Scholar
  16. Dhillon GS, Inamdar S. 2013. Extreme storms and changes in particulate and dissolved organic carbon in runoff: entering uncharted waters? Geophys Res Lett 40:1322–7. doi: 10.1002/grl.50306.CrossRefGoogle Scholar
  17. Dillon P, Molot L. 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36:29–42. http://www.springerlink.com/index/R8T747813464N585.pdf. Accessed 23 June 2011
  18. Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22:1–10. http://www.agu.org/pubs/crossref/2008/2006GB002854.shtml. Accessed 21 July 2010
  19. Driscoll C, Newton R. 1985. Chemical characteristics of Adirondack lakes. Environ Sci Technol 19:1018–24. doi: 10.1021/es00141a604.CrossRefPubMedGoogle Scholar
  20. Einsele G. 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Glob Planet Change 30:167–95.CrossRefGoogle Scholar
  21. Ferland M-E, del Giorgio PA, Teodoru CR, Prairie YT. 2012. Long-term C accumulation and total C stocks in boreal lakes in northern Québec. Global Biogeochem Cycles 26:1–10. http://www.agu.org/pubs/crossref/2012/2011GB004241.shtml. Accessed 27 Oct 2012
  22. Fichot C, Benner R. 2014. The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin. Global Biogeochem Cycles 28:300–18. doi: 10.1002/2013GB004670/full.CrossRefGoogle Scholar
  23. Fisher S, Likens G. 1973. Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–39. doi: 10.2307/1942301.CrossRefGoogle Scholar
  24. Francis TB, Schindler DE, Holtgrieve GW, Larson ER, Scheuerell MD, Semmens BX, Ward EJ. 2011. Habitat structure determines resource use by zooplankton in temperate lakes. Ecol Lett 14:364–72. http://www.ncbi.nlm.nih.gov/pubmed/21314881. Accessed 04 May 2014
  25. Galloway JN, Norton S a, Church MR. 1983. Freshwater acidification from atmospheric deposition of sulfuric acid: A conceptual model. Environ Sci Technol 17:541A–5A. http://www.ncbi.nlm.nih.gov/pubmed/22668109
  26. Gasith A, Hasler A. 1976. Airborne litterfall as a source of organic matter in lakes. Limnol Oceanogr 21:253–8. http://www.jstor.org/stable/2835227. Accessed 27 Jan 2011
  27. Gudasz C, Bastviken D, Premke K, Steger K, Tranvik LJ. 2012. Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnol Oceanogr 57:163–75. http://www.aslo.org/lo/toc/vol_57/issue_1/0163.html. Last Accessed 06 Jan 2012
  28. Hanson PC, Bade DL, Carpenter SR, Kratz TK. 2003. Lake metabolism: Relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:1112–9. http://www.aslo.org/lo/toc/vol_48/issue_3/1112.html
  29. Hanson PC, Pollard AI, Bade DL, Predick K, Carpenter SR, Foley JA. 2004. A model of carbon evasion and sedimentation in temperate lakes. Glob Chang Biol 10:1285–98. doi: 10.1111/j.1529-8817.2003.00805.x/full.CrossRefGoogle Scholar
  30. Hanson PC, Hamilton DP, Stanley EH, Preston N, Langman OC, Kara EL. 2011. Fate of allochthonous dissolved organic carbon in lakes: A quantitative approach. PLoS One 6:1–12. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3136486&tool=pmcentrez&rendertype=abstract. Accessed 1 Aug 2011
  31. Hanson P, Buffam I, Rusak J, Stanley E, Watras C. 2014. Quantifying lake allochthonous organic carbon budgets using a simple equilibrium model. Limnol Ocean 59:167–81. http://www.aslo.org/lo/pdf/vol_59/issue_1/0167.pdf. Accessed 28 Jan 2014
  32. Hoellein TJ, Bruesewitz D a., Richardson DC. 2013. Revisiting Odum (1956): A synthesis of aquatic ecosystem metabolism. Limnol Oceanogr 58:2089–100. http://www.aslo.org/lo/toc/vol_58/issue_6/2089.html. Accessed 3 Feb 2014
  33. Hotchkiss E, Hall R, Baker M, Rosi-Marshall E, Tank J. 2014. Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. J Geophys Res Biogeosci 119:982–95.CrossRefGoogle Scholar
  34. Houser J, Bade D, Cole J, Pace M. 2003. The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and photosynthetic reduction. Biogeochemistry 64:247–69. doi: 10.1023/A:1024933931691.CrossRefGoogle Scholar
  35. Huotari J, Ojala A, Peltomaa E, Nordbo A, Launiainen S, Pumpanen J, Rasilo T, Hari P, Vesala T. 2011. Long-term direct CO2 flux measurements over a boreal lake: five years of eddy covariance data. Geophys Res Lett 38:1–5. http://www.agu.org/pubs/crossref/2011/2011GL048753.shtml. Accessed 26 Nov 2011
  36. ILEC. 1994. 1988–1993 Survey of the State of the World’s Lakes, volumes I–IV. Institute LBR, Ed. Nairobi: Otsu and United Nations Environment ProgrammeGoogle Scholar
  37. Jones S, Solomon C, Weidel B. 2012. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes? Freshw Rev 5:37–49. doi: 10.1608/FRJ-5.1.475.CrossRefGoogle Scholar
  38. Jonsson A, Meili M, Bergström A-K, Jansson M. 2001. Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnol Oceanogr 46:1691–700. http://www.aslo.org/lo/toc/vol_46/issue_7/1691.html
  39. Karlsson J, Berggren M, Ask J, Byström P, Jonsson A, Laudon H, Jansson M. 2012. Terrestrial organic matter support of lake food webs: Evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol Oceanogr 57:1042–8. http://www.aslo.org/lo/toc/vol_57/issue_4/1042.html. Accessed 5 May 2014
  40. Kastowski M, Hinderer M, Vecsei A. 2011. Long-term carbon burial in European lakes: analysis and estimate. Glob Biogeochem Cycles 25:1–12. http://www.agu.org/pubs/crossref/2011/2010GB003874.shtml. Accessed 10 Oct 2011
  41. Kelly P, Solomon CT, Weidel BC, Jones S. 2014. Terrestrial carbon is a resource, but not a subsidy, for lake zooplankton. Ecology 95:1236–42.Google Scholar
  42. Kortelainen P, Pajunen H, Rantakari M, Saarnisto M. 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Glob Chang Biol 10:1648–53. doi: 10.1111/j.1365-2486.2004.00848.x.CrossRefGoogle Scholar
  43. Kutser T, Pierson DC, Kallio KY, Reinart A, Sobek S. 2005. Mapping lake CDOM by satellite remote sensing. Remote Sens Environ 94:535–40.CrossRefGoogle Scholar
  44. Lambert T, Pierson-Wickmann A-C, Gruau G, Jaffrezic A, Petitjean P, Thibault J-N, Jeanneau L. 2013. Hydrologically driven seasonal changes in the sources and production mechanisms of dissolved organic carbon in a small lowland catchment. Water Resour Res 49:5792–803. doi: 10.1002/wrcr.20466.CrossRefGoogle Scholar
  45. Leroux SJ, Loreau M. 2008. Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecol Lett 11:1147–56. http://www.ncbi.nlm.nih.gov/pubmed/18713270. Accessed 28 March 2014
  46. Likens G. 1985. An ecosystem approach to aquatic ecology: mirror lake and its environment. New York: Springer.CrossRefGoogle Scholar
  47. Likens G, Bormann F, Pierce R, Eaton J, Johnson N. 1977. Biogeochemistry of a forested ecosystem. New York: Springer.CrossRefGoogle Scholar
  48. Likens G, Driscoll C, Buso D. 1996. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–6. http://www.esf.edu/efb/mitchell/ClassReadings/Sci.272.244.246.pdf. Accessed 5 May 2014
  49. MacIntyre S, Jonsson A, Jansson M, Aberg J, Turney DE, Miller SD. 2010. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophys Res Lett 37:n/a–n/a. doi: 10.1029/2010GL044164.
  50. Matthews DA, Effler SW. 2006. Long-term changes in the areal hypolimnetic oxygen deficit (AHOD) of Onondaga Lake: evidence of sediment feedback. Limnol Oceanogr 51:702–14. http://www.aslo.org/lo/toc/vol_51/issue_1_part_2/0702.html
  51. Mattson M, Likens G. 1993. Redox reactions of organic matter decomposition in a soft water lake. Biogeochemistry 19. doi: 10.1007/BF00000876
  52. McConnaughey T, Labaugh J, Rosenberry D, Striegl R, Reddy M, Schuster P, Carter V. 1994. Carbon budget for a groundwater-fed lake: Calcification supports summer photosynthesis. Limnol Oceanogr 39:1319–32. http://wwwbrr.cr.usgs.gov/projects/GWC_Crystal/Scanned_files/Carbon_budget_for_a91.pdf. Accessed 5 May 2014
  53. McDonald CP, Stets EG, Striegl RG, Butman D. 2013. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. Global Biogeochem Cycles 27:285–95. doi: 10.1002/gbc.20032.CrossRefGoogle Scholar
  54. Pace ML, Prairie YT. 2005. Respiration in Lakes. In: del Giorgio PA, Williams PB, Eds. Respiration in aquatic ecosystems. Oxford, UK: Oxford University Press. p 103–21.CrossRefGoogle Scholar
  55. Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D. 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–3. http://www.nature.com/nature/journal/v427/n6971/abs/nature02227.html. Accessed 27 Jan 2011
  56. Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. http://www.jstor.org/stable/2952495. Accessed 27 Jan 2011
  57. Porter JH, Nagy E, Kratz TK, Hanson P, Collins SL, Arzberger P. 2009. New eyes on the world: advanced sensors for ecology. Bioscience 59:385–97.CrossRefGoogle Scholar
  58. Porter JH, Hanson PC, Lin C-C. 2011. Staying afloat in the sensor data deluge. Trends Ecol Evol 27:1–9. http://www.ncbi.nlm.nih.gov/pubmed/22206661. Accessed 8 Jan 2012
  59. Preston ND, Carpenter SR, Cole JJ, Pace ML. 2008. Airborne carbon deposition on a remote forested lake. Aquat Sci 70:213–24. doi: 10.1007/s00027-008-8074-5.CrossRefGoogle Scholar
  60. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. 2013. Global carbon dioxide emissions from inland waters. Nature 503:355–9. http://www.nature.com/doifinder/10.1038/nature12760. Accessed 20 Nov 2013
  61. Read JS, Hamilton DP, Desai AR, Rose KC, Mac-Intyre S, Lenters JD, Smyth RL, Hanson PC, Cole JJ, Staehr PA, Rusak JA, Pierson DC, Brookes JD, Laas A, Wu CH. 2012. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys Res Lett 39:n/a–n/a. doi: 10.1029/2012GL051886.
  62. Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens IA, Laruelle GG, Lauerwald R, Luyssaert S, Andersson AJ, Arndt S, Arnosti C, Borges AV, Dale AW, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe DE, Leifeld J, Meysman FJR, Munhoven G, Raymond PA, Spahni R, Suntharalingam P, Thullner M. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607. http://www.nature.com/doifinder/10.1038/ngeo1830. Accessed 17 Sept 2013
  63. Roehm CL, Prairie YT, del Giorgio PA. 2009. The pCO2 dynamics in lakes in the boreal region of northern Québec, Canada. Global Biogeochem Cycles 23:1–9. http://www.agu.org/pubs/crossref/2009/2008GB003297.shtml. Accessed 13 April 2012
  64. Saunders G. 1980. Organic matter and decomposers. In: Le Cren E, McConnell R, Eds. The functioning of freshwater ecosystems. Cambridge: Cambridge University Press. p 341–92.Google Scholar
  65. Schindler DW. 1986. The significance of in-lake production of alkalinity. Water Air Soil Pollut 30:931–44.CrossRefGoogle Scholar
  66. Schindler J, Krabbenhoft D. 1998. The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream. Biogeochemistry 43:157–74. doi: 10.1023/A%3A1006005311257.CrossRefGoogle Scholar
  67. Smith V. 1998. Cultural eutrophication of inland, estuarine, and coastal waters. In: Pace ML, Groffman P, Eds. Successes, limitations, and frontiers in ecosystem science. New York: Springer. p 7–49.CrossRefGoogle Scholar
  68. Sobek S, Algesten G, Bergstrom A-K, Jansson M, Tranvik LJ. 2003. The catchment and climate regulation of pCO2 in boreal lakes. Glob Chang Biol 9:630–41. doi: 10.1046/j.1365-2486.2003.00619.x/full.CrossRefGoogle Scholar
  69. Solomon C, Bruesewitz D, Richardson, Rose K, Van de Bogert M, Hanson P, Kratz T, Larget B, Adrian R, Leroux Babin B, Chiu C-Y, Hamilton D, Gaiser E, Hendricks S, Istvanovics V, Laas A, O’Donnell D, Pace M, Ryder E, Staehr P, Torgersen T, Vanni M, Weathers K, Zhu G. 2013. Ecosystem respiration: Drivers of daily variability and background respiration in lakes around the globe. Limnol Oceanogr 58:849–66. http://faculty.newpaltz.edu/davidrichardson/files/Solomon2013-LO-EcosystemRespirationDriversDailyVariabilityBackgroundRespirationLakesGLEON.pdf. Accessed 23 Oct 2013
  70. Staehr PA, Sand-jensen K. 2007. Temporal dynamics and regulation of lake metabolism. Limnol Oceanogr 52:108–20.CrossRefGoogle Scholar
  71. Staehr P, Bade D, Van de Bogert M, Koch G, Williamson C, Hanson P, Cole J, Kratz T. 2010. Lake metabolism and the diel oxygen technique: State of the science. Limnol Oceanogr Methods 8:628–44. http://72.48.224.78/lomethods/free/2010/0628.pdf. Accessed 7 May 2014
  72. Stallard R. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob Biogeochem Cycles 12:231–57. doi: 10.1029/98GB00741/full.CrossRefGoogle Scholar
  73. Stets EG, Striegl RG, Aiken GR, Rosenberry DO, Winter TC. 2009. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J Geophys Res 114:G01008. doi: 10.1029/2008JG000783.Google Scholar
  74. Striegl RG, Kortelainen P, Chanton JP, Wickland KP, Bugna GC, Rantakari M. 2001. Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt. Limnol Oceanogr 46:941–5. http://www.aslo.org/lo/toc/vol_46/issue_4/0941.html
  75. Taipale SJ, Brett MT, Hahn MW, Martin-Creuzburg D, Yeung S, Hiltunen M, Strandberg U, Kankaala P. 2014. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology 95:563–76. http://www.ncbi.nlm.nih.gov/pubmed/24669748
  76. Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML. 2010. A review of allochthonous organic matter dynamics and metabolism in streams. J North Am Benthol Soc 29:118–46. doi: 10.1899/08-170.1.CrossRefGoogle Scholar
  77. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314. http://cat.inist.fr/?aModele=afficheN&amp;cpsidt=22279829. Accessed 12 June 2013
  78. Vachon D, Prairie YT, Cole JJ. 2010. The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55:1723–32. http://www.aslo.org/lo/toc/vol_55/issue_4/1723.html. Accessed 20 Feb 2014
  79. Van De Bogert MC, Carpenter SR, Cole JJ, Pace ML. 2007. Assessing pelagic and benthic metabolism using free water measurements. Limnol Oceanogr Methods 5:145–55.CrossRefGoogle Scholar
  80. Van de Bogert MC, Bade DL, Carpenter SR, Cole JJ, Pace ML, Hanson PC, Langman OC. 2012. Spatial heterogeneity strongly affects estimates of ecosystem metabolism in two north temperate lakes. Limnol Oceanogr 57:1689–700. http://www.aslo.org/lo/toc/vol_57/issue_6/1689.html. Accessed 14 Feb 2013
  81. Vollenweider R. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem del Inst di Idrobiol 33:53–83.Google Scholar
  82. Weathers KC, Lovett GM. 1998. Acid deposition research and ecosystem science: synergetic successes. In: Pace ML, Groffman P, Eds. Successes, limitations, and frontiers in ecosystem science. New York: Springer. pp 195–219.Google Scholar
  83. Wetzel RG. 2001. Limnology: lake and river ecosystems. 2nd edn. San Diego: Academic Press.Google Scholar
  84. Wilkinson GM, Carpenter SR, Cole JJ, Pace ML, Yang C. 2013a. Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshw Biol 58:2037–49. doi: 10.1111/fwb.12189.CrossRefGoogle Scholar
  85. Wilkinson GM, Pace ML, Cole JJ. 2013 b. Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochem Cycles 27:n/a–n/a. doi: 10.1029/2012GB004453.
  86. Wilkinson GM, Carpenter SR, Cole JJ, Pace ML. 2014. Use of deep autochthonous resources by zooplankton: results of a metalimentic addition of 13C to a small lake. Limnol Oceanogr 59:986–96.CrossRefGoogle Scholar
  87. Winslow LA, Read JS, Hanson PC, Stanley EH. 2014. Lake shoreline in the contiguous United States: quantity, distribution and sensitivity to observation resolution. Freshwater Biol 59:213–23. doi: 10.1111/fwb.12258.
  88. Winter TC, Likens G. 2009. Mirror lake: interactions among air, land and water. Berkeley: University of California Press.Google Scholar
  89. Yang H, Xing Y, Xie P, Ni L, Rong K. 2008. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance. Environ Pollut 151:559–68. http://www.ncbi.nlm.nih.gov/pubmed/17664033. Accessed 29 April 2014

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Paul C. Hanson
    • 1
  • Michael L. Pace
    • 2
  • Stephen R. Carpenter
    • 1
  • Jonathan J. Cole
    • 3
  • Emily H. Stanley
    • 1
  1. 1.Center for LimnologyUniversity of WisconsinMadisonUSA
  2. 2.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  3. 3.Cary Institute of Ecosystem StudiesMillbrookUSA

Personalised recommendations