Advertisement

Ecosystems

, Volume 17, Issue 8, pp 1439–1454 | Cite as

Stand Structure and Recent Climate Change Constrain Stand Basal Area Change in European Forests: A Comparison Across Boreal, Temperate, and Mediterranean Biomes

  • P. Ruiz-BenitoEmail author
  • J. Madrigal-González
  • S. Ratcliffe
  • D. A. Coomes
  • G. Kändler
  • A. Lehtonen
  • C. Wirth
  • M. A. Zavala
Article

Abstract

European forests have a prominent role in the global carbon cycle and an increase in carbon storage has been consistently reported during the twentieth century. Any further increase in forest carbon storage, however, could be hampered by increases in aridity and extreme climatic events. Here, we use forest inventory data to identify the relative importance of stand structure (stand basal area and mean d.b.h.), mean climate (water availability), and recent climate change (temperature and precipitation anomalies) on forest basal area change during the late twentieth century in three major European biomes. Using linear mixed-effects models we observed that stand structure, mean climate, and recent climatic change strongly interact to modulate basal area change. Although we observed a net increment in stand basal area during the late twentieth century, we found the highest basal area increments in forests with medium stand basal areas and small to medium-sized trees. Stand basal area increases correlated positively with water availability and were enhanced in warmer areas. Recent climatic warming caused an increase in stand basal area, but this increase was offset by water availability. Based on recent trends in basal area change, we conclude that the potential rate of aboveground carbon accumulation in European forests strongly depends on both stand structure and concomitant climate warming, adding weight to suggestions that European carbon stocks may saturate in the near future.

Keywords

Carbon sink Climatic variability Competition Inventory-based data Minimum temperature Mixed models Water availability Stand basal area change 

Notes

Acknowledgements

This research was supported by the CARBO-Extreme (FP7-ENV-2008-1-226701) and Leverhulme Trust project IN-2013-004. PRB was supported by a FPU fellowship (AP2008-01325). We thank A. Herrero for interesting discussion on earlier versions of this manuscript, the MAGRAMA for granting access to the Spanish Forest Inventory data, the Johann Heinrich von Thünen-Institut for making data from the first and second German National Forest Inventory available, and to the Finnish Forest Research Institute (METLA) for making permanent sample plot data from 1985 to 1986 and from 1995 available. We also acknowledge access to UDel_AirT_Precip data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd/).

Supplementary material

10021_2014_9806_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1780 kb)

References

  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–84.CrossRefGoogle Scholar
  2. Anderson KJ, Allen AP, Gillooly JF, Brown JH. 2006. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol Lett 9:673–82.PubMedCrossRefGoogle Scholar
  3. Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank D. 2013. Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22:706–17.CrossRefGoogle Scholar
  4. Barber VA, Juday GP, Finney BP. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–73.PubMedCrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker B. 2012. lme4: Linear mixed-effects models using S4 classes. R-package version 0.999375-42. http://lme4.r-forge.r-project.org/.
  6. Bellassen V, Luyssaert S. 2014. Carbon sequestration: managing forest in uncertain times. Nature 506:153–5.PubMedCrossRefGoogle Scholar
  7. Bellassen V, Viovy N, Luyssaert S, Le Maire G, Schelhaas MJ, Ciais P. 2011. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob Change Biol 17:3274–92.CrossRefGoogle Scholar
  8. Belsey DA. 1991. Conditioning diagnostics, collinearity and weak data in regression. New York: Wiley.Google Scholar
  9. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–35.PubMedCrossRefGoogle Scholar
  10. Benito-Garzón M, Ruiz-Benito P, Zavala MA. 2013. Inter-specific differences in tree growth and mortality responses to climate determine potential species distribution limits in Iberian forests. Glob Ecol Biogeogr 22:1141–51.CrossRefGoogle Scholar
  11. Boisvenue C, Running SW. 2006. Impacts of climate change on natural forest productivity: evidence since the middle of the 20th century. Glob Change Biol 12:862–82.CrossRefGoogle Scholar
  12. Burnham KP, Anderson DR. 2002. Model selection and multi model inference: a practical information-theoretic approach. New York: Springer. p 488p.Google Scholar
  13. Cao M, Woodward FI. 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–52.CrossRefGoogle Scholar
  14. Canadell JG, Raupach MR. 2008. Managing forests for climate change mitigation. Science 320:1456–7.PubMedCrossRefGoogle Scholar
  15. Carrer M, Urbinati C. 2004. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–40.CrossRefGoogle Scholar
  16. Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J. 2011. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci 108:1474–8.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Charru M, SeynaveI Morneau F, Bontemps JD. 2010. Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. For Ecol Manage 260:864–74.CrossRefGoogle Scholar
  18. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, MagañaRueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P. 2007. Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Eds. Climate change 2007: The physical science basis. Cambridge: University Press. p 847–943.Google Scholar
  19. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.PubMedCrossRefGoogle Scholar
  20. Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze E-D, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ. 2008. Carbon accumulation in European forests. Nat Geosci 1:425–9.CrossRefGoogle Scholar
  21. Coll M, Peñuelas J, Ninyerola M, Pons X, Carnicer J. 2013. Multivariate effect gradients driving forest demographic responses in the Iberian Peninsula. For Ecol Manage 303:195–209.CrossRefGoogle Scholar
  22. Coomes DA, Allen RB. 2007. Effects of size, competition and altitude on tree growth. J Ecol 95:1084–97.CrossRefGoogle Scholar
  23. Coomes DA, Holdaway RJ, Kobe RK, Lines ER, Allen RB. 2012. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. J Ecol 100:42–64.CrossRefGoogle Scholar
  24. Dietze MC, Moorcroft PR. 2011. Tree mortality in the eastern and central United States: patterns and drivers. Glob Change Biol 17:3312–26.CrossRefGoogle Scholar
  25. Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185–90.PubMedCrossRefGoogle Scholar
  26. Food and Agriculture Organization of the United Nations. 2010. Global Forest Resources Assessment 2010. http://www.fao.org/forestry/fra/fra2010/en/.
  27. Gamfeldt L, Snall T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Froberg M, Stendahl J, Philipson CD, Mikusinski G, Andersson E, Westerlund B, Andren H, Moberg F, Moen J, Bengtsson J. 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340.PubMedCentralPubMedCrossRefGoogle Scholar
  28. García-Valdés R, Zavala MA, Araújo MB, Purves DW. 2013. Chasing a moving target: projecting climate change-induced changes in non-equilibrial tree species distributions. J Ecol 101:441–53.CrossRefGoogle Scholar
  29. Gerten D, Luo Y, Maire LeG, Parton WJ, Keough C, Weng E, Beier C, Ciais P, Cramer W, Dukes JS, Hanson PJ, Knapp AAK, Linder S, Nepstad DAN, Rustad L, Sowerby A. 2008. Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones. Glob Change Biol 14:2365–79.CrossRefGoogle Scholar
  30. Gómez-Aparicio L, García-Valdés R, Ruiz-Benito P, Zavala MA. 2011. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for management under global change. Glob Change Biol 17:2400–14.CrossRefGoogle Scholar
  31. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Nabuurs G-J, Nilsson S, Shvidenko AZ. 2002. Forest carbon sinks in the northern hemisphere. Ecol Appl 12:891–9.CrossRefGoogle Scholar
  32. Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–7.PubMedCrossRefGoogle Scholar
  33. Hember RA, Kurz WA, Metsaranta JM, Black TA, Guy RD, Coops NC. 2012. Accelerating regrowth of temperate-maritime forests due to environmental change. Glob Change Biol 18:2026–40.CrossRefGoogle Scholar
  34. Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907–13.PubMedCrossRefGoogle Scholar
  35. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–78.CrossRefGoogle Scholar
  36. Hilborn R, Mangel M. 1997. The ecological detective: confronting models with data. Princeton (NJ): Princeton University Press.Google Scholar
  37. Hoch G, Körner C. 2012. Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob Ecol Biogeogr 21:861–71.CrossRefGoogle Scholar
  38. Lines ER, Zavala MA, Purves DW, Coomes DA. 2012. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob Ecol Biogeogr 21:1017–28.CrossRefGoogle Scholar
  39. Kauppi PE, Mielikäinen K, Kuusela K. 1992. Biomass and carbon budget of European forests, 1971 to 1990. Science 256:70–4.PubMedCrossRefGoogle Scholar
  40. Knapp AK, Smith MD. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–4.PubMedCrossRefGoogle Scholar
  41. Kunstler G, Albert CH, Courbaud B, Lavergne S, Thuiller W, Vieilledent G, Zimmermann NE, Coomes DA. 2011. Effects of competition on tree radial-growth vary in importance but not in intensity along climatic gradients. J Ecol 99:300–12.CrossRefGoogle Scholar
  42. Luyssaert S, Ciais P, Piao SL, Schulze ED, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, Van Der Werf GR, Janssens IA. 2010. The European carbon balance. Part 3: Forests. Glob Change Biol 16:1429–50.CrossRefGoogle Scholar
  43. Madrigal A. 1998. Problemática de la ordenación de masas artificiales en España. Cuadernos de la Sociedad Española de Ciencias Forestales 6:13–20.Google Scholar
  44. Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:849–51.CrossRefGoogle Scholar
  45. Madrigal-González J, Zavala MA. 2014. Competition and tree age modulated last century pine growth responses to high frequency of dry years in a water limited forest ecosystem. Agric For Meteorol 192–193:18–26.CrossRefGoogle Scholar
  46. McMahon SM, Parker GG, Miller DR. 2010. Evidence for a recent increase in forest growth. Proc Natl Acad Sci 107:3611–15.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Millennium Ecosystem Assessment. 2005. Ecosystem and human well-being: biodiversity synthesis. Washington, DC: Island Press.Google Scholar
  48. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 1991. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702.CrossRefGoogle Scholar
  49. Nabuurs GJ, Lindner M, Verkerk PJ, Gunia K, Deda P, Michalak R, Grassi G. 2013. First signs of carbon sink saturation in European forest biomass. Nat Clim Change 3:792–6.CrossRefGoogle Scholar
  50. Nabuurs GJ, Schelhaas MJ, Mohren GMJ, Field CB. 2003. Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Glob Change Biol 9:152–60.CrossRefGoogle Scholar
  51. Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–42.CrossRefGoogle Scholar
  52. Oksanen J, Blanchet FG, Kindt R;Legendre P, O’Hara RG, Simpson GL, Solymos P, Stevens M, Wagner H. 2010. Multivariate analysis of ecological communities in R: vegan tutorial. R package version 1.17-0. http://CRAN.R-project.org/package=vegan.
  53. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR. 2001. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–8.CrossRefGoogle Scholar
  54. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93.PubMedCrossRefGoogle Scholar
  55. Pastor J, Post WM. 1988. Response of northern forests to CO2-induced climate change. Nature 334:55–8.CrossRefGoogle Scholar
  56. Peng J, Dan L, Huang M. 2014. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison. PLoS One 9:e95282.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Pinheiro JC, Bates DM. 2000. Mixed effect models in S and S-Plus. New York: Springer. p 528.CrossRefGoogle Scholar
  58. R Development Core Team. 2012. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. www.r-project.org.
  59. Ruiz-Benito P, Gómez-Aparicio L, Zavala MA. 2012. Large scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Divers Distrib 18:1092–106.CrossRefGoogle Scholar
  60. Ruiz-Benito P, Lines ER, Gómez-Aparicio L, Zavala MA, Coomes DA. 2013. Patterns and drivers of tree mortality in Iberian forests: climatic effects are modified by competition. PLoS One 8:e56843.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D. 2012. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc B 367:3135–44.CrossRefGoogle Scholar
  62. Sánchez-Salguero R, Navarro-Cerrillo R, Camarero J, Fernández-Cancio Á. 2012. Selective drought-induced decline of pine species in southeastern Spain. Clim Change 113:767–85.CrossRefGoogle Scholar
  63. Schimel D. 2007. Carbon cycle conundrums. Proc Natl Acad Sci 104:18353–4.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–72.PubMedCrossRefGoogle Scholar
  65. Sheil D, Burslem DFRP, Alder D. 1995. The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–3.CrossRefGoogle Scholar
  66. Slik JWF, Aiba S-I, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G, Poulsen AD, Raes N, Sheil D, Sidiyasa K, Suzuki E, van Valkenburg JLCH. 2010. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob Ecol Biogeogr 19:50–60.CrossRefGoogle Scholar
  67. Silva LCR, Anand M, Leithead MD. 2010. Recent widespread tree growth decline despite increasing atmospheric CO2. PLoS One 5:e11543.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Suarez ML, Ghermandi L, Kitzberger T. 2004. Factors predisposing episodic drought-induced tree mortality in Nothofagus: site, climatic sensitivity and growth trends. J Ecol 92:954–66.CrossRefGoogle Scholar
  69. Spiecker H. 1999. Overview of recent growth trends in European forests. Water Air Soil Pollut 116:33–46.CrossRefGoogle Scholar
  70. Sykes M, Prentice IC. 1996. Climate change, tree species distributions and forest dynamics: a case study in the mixed conifer/northern hardwoods zone of Northern Europe. Clim Change 34:161–77.CrossRefGoogle Scholar
  71. Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Gu[eth]mundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404: 861–865.Google Scholar
  72. van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT. 2009. Widespread increase of tree mortality rates in the western United States. Science 323:521–4.PubMedCrossRefGoogle Scholar
  73. Vayreda J, Martínez-Vilalta J, Gracia M, Retana J. 2012. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Change Biol 18:1028–41.CrossRefGoogle Scholar
  74. Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sánchez-Lorenzo A. 2013. Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci 110:52–7.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Vieira J, Campelo F, Nabais C. 2009. Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees-Struct Funct 23:257–65.CrossRefGoogle Scholar
  76. Vilá-Cabrera A, Martínez-Vilalta J, Vayreda J, Retana J. 2011. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 31:1162–72.CrossRefGoogle Scholar
  77. Vilà M, Carrillo-Gavilán A, Vayreda J, Bugmann H, Fridman J, Grodzki W, Haase J, Kunstler G, Schelhaas M, Trasobares A. 2013. Disentangling biodiversity and climatic determinants of wood production. PLoS One 8:e53530.PubMedCentralPubMedCrossRefGoogle Scholar
  78. Way DA, Oren R. 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–88.PubMedCrossRefGoogle Scholar
  79. Woodward FI, Williams BG. 1987. Climate and plant distribution at global and local scales. Vegetation 69:189–97.CrossRefGoogle Scholar
  80. Zhao M, Running SW. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–3.PubMedCrossRefGoogle Scholar
  81. Zomer R, Bossio D, Trabucco A, Yuanjie L, Gupta D, Singh V. 2007. Trees and water: smallholder agroforestry on irrigated lands in Northern India. Colombo: International Water Management Institute.Google Scholar
  82. Zomer RJ, Trabucco A, Bossio DA, Verchot LV. 2008. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80.CrossRefGoogle Scholar
  83. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects models and extension in ecology with R. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • P. Ruiz-Benito
    • 1
    • 2
    • 3
    Email author
  • J. Madrigal-González
    • 2
  • S. Ratcliffe
    • 4
  • D. A. Coomes
    • 5
  • G. Kändler
    • 6
  • A. Lehtonen
    • 7
  • C. Wirth
    • 4
    • 8
  • M. A. Zavala
    • 2
  1. 1.Department of Forest Ecology and GeneticsForest Research Center - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CIFOR-INIA)MadridSpain
  2. 2.Forest Ecology and Restoration Group, Department of Life Sciences, Science BuildingUniversity of AlcalaAlcalá de HenaresSpain
  3. 3.Biological and Environmental Sciences, School of Natural SciencesUniversity of StirlingStirlingUK
  4. 4.University of Leipzig, AG Spezielle Botanik und Funktionelle BiodiversitätLeipzigGermany
  5. 5.Forest Ecology and Conservation Group, Department of Plant SciencesUniversity of CambridgeCambridgeUK
  6. 6.The Forest Research InstituteFreiburgGermany
  7. 7.Vantaa Research CentreFinnish Forest Research InstituteVantaaFinland
  8. 8.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany

Personalised recommendations