, Volume 17, Issue 5, pp 931–945 | Cite as

A Synthesis of Climate and Vegetation Cover Effects on Biogeochemical Cycling in Shrub-Dominated Drylands

  • Marie-Anne de Graaff
  • Heather L. Throop
  • Paul S. J. Verburg
  • John A. ArnoneIII
  • Xochi Campos


Semi-arid and arid ecosystems dominated by shrubs (“dry shrublands”) are an important component of the global C cycle, but impacts of climate change and elevated atmospheric CO2 on biogeochemical cycling in these ecosystems have not been synthetically assessed. This study synthesizes data from manipulative studies and from studies contrasting ecosystem processes in different vegetation microsites (that is, shrub or herbaceous canopy versus intercanopy microsites), to assess how changes in climate and atmospheric CO2 affect biogeochemical cycles by altering plant and microbial physiology and ecosystem structure. Further, we explore how ecosystem structure impacts on biogeochemical cycles differ across a climate gradient. We found that: (1) our ability to project ecological responses to changes in climate and atmospheric CO2 is limited by a dearth of manipulative studies, and by a lack of measurements in those studies that can explain biogeochemical changes, (2) changes in ecosystem structure will impact biogeochemical cycling, with decreasing pools and fluxes of C and N if vegetation canopy microsites were to decline, and (3) differences in biogeochemical cycling between microsites are predictable with a simple aridity index (MAP/MAT), where the relative difference in pools and fluxes of C and N between vegetation canopy and intercanopy microsites is positively correlated with aridity. We conclude that if climate change alters ecosystem structure, it will strongly impact biogeochemical cycles, with increasing aridity leading to greater heterogeneity in biogeochemical cycling among microsites. Additional long-term manipulative experiments situated across dry shrublands are required to better predict climate change impacts on biogeochemical cycling in deserts.


climate change elevated atmospheric CO2 semi-arid and arid ecosystems biogeochemical cycles meta analysis spatial heterogeneity 



We thank Brenda Nieto, Amanda Sills, and Richard Jasoni for assisting with data collection. This work was supported by the National Science Foundation EPSCoR Program (EPS-0814387) with additional support from NSF DEB 0953864.

Supplementary material

10021_2014_9764_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)


  1. Aanderud CT, Richards JH, Svejcar T, James JJ. 2010. A shift in seasonal rainfall reduces soil organic carbon storage in a cold desert. Ecosystems 13:673–82.CrossRefGoogle Scholar
  2. Adams DC, Gurevitch J, Rosenberg MS. 1997. Resampling tests for meta-analysis of ecological data. Ecology 78:1277–83.CrossRefGoogle Scholar
  3. Anderson JPE, Domsch KH. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–21.CrossRefGoogle Scholar
  4. Austin AT. 2011. Has water limited our imagination for aridland biogeochemistry? Trends Ecol Evol 26:229–35.PubMedCrossRefGoogle Scholar
  5. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–35.PubMedCrossRefGoogle Scholar
  6. Bachman S, Heisler-White JL, Pendall E, Williams DG, Morgan JA, Newcomb J. 2010. Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland. Oecologia 62:791–802.CrossRefGoogle Scholar
  7. Barger NN, Archer SR, Campbell JL, Huang CY, Morton JA, Knapp AK. 2011. Woody plant proliferation in North American drylands: a synthesis of impacts on ecosystem carbon balance. J Geophys Res 116:G00K07. doi: 10.1029/2010JG001506.Google Scholar
  8. Barker DH, Vanier C, Naumburg E, Charlet TN, Nielsen KM, Newingham BA, Smith SD. 2006. Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentata. New Phytol 169:799–808.PubMedCrossRefGoogle Scholar
  9. Bates JD, Svejcar T, Miller RF, Angell RA. 2006. The effects of precipitation timing on sagebrush steppe vegetation. J Arid Environ 64:670–97.CrossRefGoogle Scholar
  10. Billings SA, Schaeffer SM, Evans RD. 2003. Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon. Soil Biol Biochem 35:643–9.CrossRefGoogle Scholar
  11. Bradley BA. 2009. Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Glob Change Biol 15:196–208.CrossRefGoogle Scholar
  12. Bradley BA, Oppenheimer M, Wilcove DS. 2009. Climate change and plant invasions: restoration opportunities ahead? Glob Change Biol 15:1511–21.CrossRefGoogle Scholar
  13. Breshears DD, Rich PM, Barnes FJ, Campbell K. 1997. Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol Appl 7:1201–15.CrossRefGoogle Scholar
  14. Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE. 2008. Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–79.CrossRefGoogle Scholar
  15. Caldwell TG, Young MH, Zhu J, McDonald EV. 2008. Spatial structure of hydraulic properties from canopy to interspace in the Mojave Desert. Geophys Res Lett 35:L19406. doi: 10.1029/2008GL035095.CrossRefGoogle Scholar
  16. Cayan DR, Das T, Pierce DW, Barnett TP, Tyree M, Gershunov A. 2010. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci USA 107:21271–6.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chambers J, Pellant M. 2008. Climate change impacts on northwestern and intermountain United States rangelands. Rangelands 30:29–33.CrossRefGoogle Scholar
  18. Cregger MA, Schadt CW, McDowell N, Pockman W, Classen AT. 2012. Soil microbial community response to precipitation change in a semi-arid ecosystem. Appl Environ Microbiol 78:8587–94.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Curtis PS, Wang X. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313.CrossRefGoogle Scholar
  20. De Graaff MA, Jastrow JD, Six J, Wullschleger SD. 2013. Variation in root architecture among switchgrass cultivars impacts root decomposition rates. Soil Biol Biochem 58:198–206.CrossRefGoogle Scholar
  21. de Graaff MA, Van Groenigen KJ, Six J, Hungate B, van Kessel C. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Change Biol 12:2077–91.CrossRefGoogle Scholar
  22. Dukes JS, Mooney HA. 1999. Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–9.PubMedCrossRefGoogle Scholar
  23. Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG. 2011. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol Lett 14:709–22.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Fawcett PJ, Werne JP, Anderson RS, Heikoop JM, Brown ET, Berke MA, Smith SJ, Goff F, Donohoo-Hurley L, Cisneros-Dozal LM, Schouten S, Sinninghe Damste JS, Huang Y, Toney J, Fessenden J, WoldeGabriel G, Atudorei V, Geissman JW, Allen CD. 2011. Extended megadroughts in the southwestern United States during Pleistocene interglacials. Nature 470:518–21.PubMedCrossRefGoogle Scholar
  25. Ferguson SD, Nowak RS. 2011. Transitory effects of elevated atmospheric CO2 on fine root dynamics in an arid ecosystem do not increase long-term soil carbon input from fine root litter. New Phytol 190:953–67.PubMedCrossRefGoogle Scholar
  26. Field C, Behrenfeld M, Randerson J, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40.PubMedCrossRefGoogle Scholar
  27. Gill RA, Burke IC. 1999. Ecosystem consequences of plant life form changes at three sites in the semiarid United States. Oecologia 121:551–63.CrossRefGoogle Scholar
  28. Groleau-Renaud V, Plantureux S, Guckert A. 1998. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions. Plant Soil 201:231–9.CrossRefGoogle Scholar
  29. Harmon ME, Nadelhoffer KJ, Blair J. 1999. Measuring decomposition, nutrient turnover, and stores in plant litter. In: Robertson GP, Bleddsoe CS, Coleman DC, Sollins P, Eds. Standard soil methods for long-term ecological research. New York: Oxford University Press. p 202–40.Google Scholar
  30. Hedges LV, Olkin I. 1985. Statistical methods for meta-analysis. San Diego, CA: Academic Press. 369 p.Google Scholar
  31. Hibbard KA, Archer S, Schimel DS, Valentine DW. 2001. Biogeochemical changes accompanying woody plant encroachment in a subtropical savanna. Ecology 82:1999–2011.CrossRefGoogle Scholar
  32. Hibbard KA, Schimel DS, Archer S, Ojima DS, Parton W. 2003. Grassland to woodland transitions: integrating changes in landscape structure and biogeochemistry. Ecol Appl 13:911–26.CrossRefGoogle Scholar
  33. Holland EA, Robertson GP, Greenberg J, Groffman PM, Boone RD, Gosz JR. 1999. Soil CO2, N2 and CH4 exchange. In: Robertson JP, Coleman DC, Bledsoe CS, Sollins P, Eds. Standard soil methods for long-term ecological research. New York: Oxford University Press. p 185–201.Google Scholar
  34. Hooker TD, Stark JM. 2008. Soil C and N cycling in three semiarid vegetation types: response to an in situ pulse of plant detritus. Soil Biol Biochem 40:2678–85.CrossRefGoogle Scholar
  35. Hoosbeek MR, Lukac M, van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, de Angelis P, Scarascia-Mugnozza G. 2004. More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): cause of increased priming effect? Glob Biogeochem Cycles 18:GB1040. doi: 10.1029/2003GB002127.CrossRefGoogle Scholar
  36. Houghton RA. 2003. Why are estimates of the terrestrial carbon balance so different? Glob Change Biol 9:500–9.CrossRefGoogle Scholar
  37. Housman D, Powers H, Collins A, Belnap J. 2006. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:220–34.CrossRefGoogle Scholar
  38. Hungate BA, Van Groenigen KJ, Six J, Jastrow JD, Luo Y, De Graaff MA, van Kessel C, Osenberg CW. 2009. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Change Biol 15:2020–34.CrossRefGoogle Scholar
  39. Hungate BA, Chapin FSIII, Zhong H, Holland EA, Field CB. 1996. Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109:149–53.CrossRefGoogle Scholar
  40. Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S. 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–68.PubMedGoogle Scholar
  41. Ignace DD, Huxman TE, Weltzin JF, Williams DG. 2007. Leaf gas exchange and water status responses of a native and non-native grass to precipitation across contrasting soil surfaces in the Sonoran Desert. Oecologia 152:401–13.PubMedCrossRefGoogle Scholar
  42. Intergovernmental Panel on Climate Change (IPCC). 2007a. The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Eds. Cambridge, UK: Cambridge University Press.Google Scholar
  43. Intergovernmental Panel on Climate change (IPCC). 2007b. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, 2007. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, Eds. Cambridge, UK: Cambridge University Press.Google Scholar
  44. Iversen CM, Ledford J, Norby RJ. 2008. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol 179:837–47.PubMedCrossRefGoogle Scholar
  45. Iversen CM. 2009. Digging deeper: fine root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–57.PubMedCrossRefGoogle Scholar
  46. Jasoni RL, Smith SD, Arnone JAIII. 2005. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Glob Change Biol 11:749–56.CrossRefGoogle Scholar
  47. Jordan DN, Zitzer SF, Hendrey GR, Lewin KF, Nagy J, Nowak RS, Smith SD, Coleman JS, Seemann JR. 1999. Biotic, abiotic and performance aspects of the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Glob Change Biol 5:659–68.CrossRefGoogle Scholar
  48. Klopatek JM. 1987. Nitrogen mineralization and nitrification in mineral soils of pinyon-juniper ecosystems. Soil Sci Soc Am J 51:453–7.CrossRefGoogle Scholar
  49. Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB. 2008. Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Glob Change Biol 14:615–23.CrossRefGoogle Scholar
  50. Lal R. 2004. Carbon sequestration in dryland ecosystems. Environ Manag 33:528–44.CrossRefGoogle Scholar
  51. Luo Y, Hui D, Zhang D. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63.PubMedCrossRefGoogle Scholar
  52. McCulley RL, Burke IC, Nelson JA, Lauenroth WK, Knapp AK, Kelly EF. 2005. Regional patterns in carbon cycling across the Great Plains of North America. Ecosystems 8:106–21.CrossRefGoogle Scholar
  53. McGonigle TP, Chambers ML, White GJ. 2005. Enrichment over time of organic carbon and available phosphorus in semiarid soil. Soil Sci Soc Am J 69:1617–26.CrossRefGoogle Scholar
  54. Meier IC, Leuschner C. 2008. Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:2081–95.CrossRefGoogle Scholar
  55. Middleton N, Thomas DSG, UNEP. 1997. World atlas of desertification. 2nd edn. London: Arnold.Google Scholar
  56. Munson SM, Webb RH, Belnap J, Andrew Hubbard J, Swann DE, Rutman S. 2012. Forecasting climate change impacts to plant community composition in the Sonoran Desert region. Glob Change Biol 18:1083–95.CrossRefGoogle Scholar
  57. NAST. 2000. Climate Change Impacts on the United States: the potential consequences of climate variability and change. In: United States Global Change Research Program, Ed. New York: Cambridge University Press.Google Scholar
  58. Naumburg E, Housman DC, Huxman TE, Charlet TN, Loik ME, Smith SD. 2003. Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. Glob Change Biol 9:276–85.CrossRefGoogle Scholar
  59. Newingham BA, Vanier CH, Charlet TN, Ogle K, Smith SD, Nowak RS. 2013. No cumulative effect of 10 years of elevated [CO2] on perennial plant biomass components in the Mojave Desert. Glob Change Biol 19:2168–81.CrossRefGoogle Scholar
  60. Norby RJ, Jackson RB. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12.CrossRefGoogle Scholar
  61. Norton JB, Monaco TA, Norton JM, Johnson DA, Jones TA. 2004. Soil morphology and organic matter dynamics under cheatgrass and sagebrush-steppe plant communities. J Arid Environ 57:445–66.CrossRefGoogle Scholar
  62. Notaro M, Mauss A, Williams JW. 2012. Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic-envelope approach. Ecol Appl 22:1365–88.PubMedCrossRefGoogle Scholar
  63. Okin GS, Gillette DA. 2001. Distribution of vegetation in wind-dominated landscapes: implications for wind erosion modeling and landscape processes. J Geophys Res 106:9673–84.CrossRefGoogle Scholar
  64. Okin GS, Gillette DA, Herrick JE. 2006. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J Arid Environ 65:253–75.CrossRefGoogle Scholar
  65. Overpeck J, Udall B. 2010. Dry times ahead. Science 328:1642–3.PubMedCrossRefGoogle Scholar
  66. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan S-M, Sarmiento JL, Goodale CL, Schimel D, Field CB. 2001. Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292:2316–20.PubMedCrossRefGoogle Scholar
  67. Phillips DL, Johnson MG, Tingey DT, Catricala CE, Hoyman TL, Nowak RS. 2006. Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: a FACE study. Glob Change Biol 12:61–73.CrossRefGoogle Scholar
  68. Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AF. 2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett 15:1042–9.PubMedCrossRefGoogle Scholar
  69. Polley HW, Emmerich W, Bradford JA, Sims PL, Johnson DA, Saliendra NZ, Svejcar T, Angell R, Frank AB, Phillips RL, Snyder KA, Morgan JA. 2010. Physiological and environmental regulation of interannual variability in CO2 exchange on rangelands in the western United States. Glob Change Biol 16:990–1002.CrossRefGoogle Scholar
  70. Potter CS. 1999. Terrestrial biomass and the effects of deforestation on the global carbon cycle. BioScience 49:769–78.CrossRefGoogle Scholar
  71. Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG. 2006. Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New Phytol 170:849–60.PubMedCrossRefGoogle Scholar
  72. PRISM Climate Group, Oregon State University. Accessed 24 April 2013.
  73. Rasse DP, Rumpel C, Dignac MF. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–56.CrossRefGoogle Scholar
  74. Rau BM, Johnson DW, Blank RR, Lucchesi A, Caldwell TG, Schupp EW. 2011. Transition from sagebrush steppe to annual grass (Bromus tectorum): influence on belowground carbon and nitrogen. Rangel Ecol Manag 64:139–47.CrossRefGoogle Scholar
  75. Ravi S, D’Odorico P, Okin GS. 2007. Hydrologic and aeolian controls on vegetation patterns in arid landscapes. Geophys Res Lett 34:L24S23. doi: 10.1029/2007GL031023.CrossRefGoogle Scholar
  76. Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J. 2012. Increased precipitation results in rapid moss mortality and altered fertility in a dryland ecosystem. Nat Clim Change 2:752–5.CrossRefGoogle Scholar
  77. Rosenberg MS, Adams DC, Gurevitch J. 2000. MetaWin: statistical software for meta-analysis. Sunderland, MA: Sinauer Associates.Google Scholar
  78. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Gurevitch J. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–62.CrossRefGoogle Scholar
  79. Sala OE, Parton WJ, Joyce LA, Laurenroth WK. 1988. Primary production of the central grassland region of the United States. Ecology 69:40–5.CrossRefGoogle Scholar
  80. Schlesinger WH, Pilmanis AM. 1998. Plant–soil interactions in deserts. Biogeochemistry 42:169–87.CrossRefGoogle Scholar
  81. Schlesinger WH, Raikes JA, Hartley AE, Cross AF. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–74.CrossRefGoogle Scholar
  82. Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG. 1990. Biological feedbacks in global desertification. Science 247:1043–8.PubMedCrossRefGoogle Scholar
  83. Scholes RJ, Archer SR. 1997. Tree–grass interactions in savannas. Annu Rev Ecol Syst 28:517–44.CrossRefGoogle Scholar
  84. Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H-P, Harnik N, Leetmaa A, Lau N-C, Li C, Velez J, Naik N. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–4.PubMedCrossRefGoogle Scholar
  85. Six J, Paustian K, Elliott ET, Combrink C. 2000. Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Sci Soc Am J 64:681–9.CrossRefGoogle Scholar
  86. Skopp J, Jawson MD, Doran JW. 1990. Steady state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54:1619–25.CrossRefGoogle Scholar
  87. Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS. 2000. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82.PubMedCrossRefGoogle Scholar
  88. Sonderegger DL, Ogle K, Evans RD, Ferguson S, Nowak RS. 2013. Temporal dynamics of fine roots under long-term exposure to elevated CO2 in the Mojave Desert. New Phytol 198:127–38.PubMedCrossRefGoogle Scholar
  89. Sorensen PO, Germino MJ, Feris KP. 2013. Microbial community responses to 17 years of altered precipitation are seasonally dependent and coupled to co-varying effects of water content on vegetation and soil C. Soil Biol Biochem 64:155–63.CrossRefGoogle Scholar
  90. Steven B, Gallegos-Graves LV, Yeager CM, Belnap J, Evans RD, Ruske CR. 2012. Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2. Environ Microbiol 14:3247–58.PubMedCrossRefGoogle Scholar
  91. Throop HL, Reichmann LG, Sala OE, Archer SR. 2012. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland. Oecologia 169:373–83.PubMedCrossRefGoogle Scholar
  92. Throop HL, Archer SR. 2007. Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland. Ecol Appl 17:1809–23.PubMedCrossRefGoogle Scholar
  93. Throop HL, Archer SR. 2009. Resolving the dryland decomposition conundrum: some new perspectives on potential drivers. Prog Bot 70:171–94.CrossRefGoogle Scholar
  94. Thuiller W. 2007. Biodiversity: climate change and the ecologist. Nature 448:550–2.PubMedCrossRefGoogle Scholar
  95. UNDP/UNSO. 1997. Aridity zones and dryland populations: an assessment of population levels in the world’s drylands. New York: UNSO/UNDP.Google Scholar
  96. van Groenigen KJ, Six J, Hungate BA, de Graaff MA, van Breemen N, van Kessel C. 2006. Element interactions limit soil carbon storage. Proc Natl Acad Sci USA 103:6571–4.PubMedCentralPubMedCrossRefGoogle Scholar
  97. Vance ED, Brookes PC, Jenkinson DS. 1987. Microbial biomass measurements in forest soils: the use of the chloroform fumigation–incubation method in strongly acid soils. Soil Biol Biochem 19:697–702.CrossRefGoogle Scholar
  98. Verburg PSJ, Young AC, Stevenson BA, Glanzmann I, Arnone JA, Marion GM, Holmes C, Nowak RS. 2013. Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem? Glob Change Biol 19:948–56.CrossRefGoogle Scholar
  99. Weatherly HE, Zitzer SF, Coleman JS, Arnone JAIII. 2003. In situ litter decomposition and litter quality in a Mojave Desert ecosystem: effects of elevated atmospheric CO2 and interannual climate variability. Glob Change Biol 9:1223–33.CrossRefGoogle Scholar
  100. Weiss JL, Overpeck JT. 2005. Is the Sonoran Desert losing its cool? Glob Change Biol 11:2065–77.CrossRefGoogle Scholar
  101. Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC. 2003. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–52.CrossRefGoogle Scholar
  102. Wertin TM, Phillips SL, Reed SC, Belnap J. 2012. Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts. Biol Fertil Soils 48:797–805.CrossRefGoogle Scholar
  103. Wessman CA, Archer S, Johnson LC, Asner GP. 2004. Woodland expansion in US grasslands. Land Change Sci 6:185–208.CrossRefGoogle Scholar
  104. Wu Z, Dijkstra P, Koch GW, Peñuelas J, Hungate BA. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Change Biol 17:927–42.CrossRefGoogle Scholar
  105. Zelikova TJ, Housman DC, Grote EE, Neher DA, Belnap J. 2012. Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes. Plant Soil 355:265–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Marie-Anne de Graaff
    • 1
  • Heather L. Throop
    • 2
  • Paul S. J. Verburg
    • 3
  • John A. ArnoneIII
    • 4
  • Xochi Campos
    • 1
  1. 1.Department of Biological SciencesBoise State UniversityBoiseUSA
  2. 2.Department of BiologyNew Mexico State UniversityLas CrucesUSA
  3. 3.Department of Natural Resources and Environmental ScienceUniversity of NevadaRenoUSA
  4. 4.Division of Earth and Ecosystem SciencesDesert Research InstituteRenoUSA

Personalised recommendations