Advertisement

Ecosystems

, Volume 17, Issue 5, pp 751–764 | Cite as

Gross Primary Productivity of a High Elevation Tropical Montane Cloud Forest

  • Martine Janet van de WegEmail author
  • Patrick Meir
  • Mat Williams
  • Cécile Girardin
  • Yadvinder Malhi
  • Javier Silva-Espejo
  • John Grace
Article

Abstract

For decades, the productivity of tropical montane cloud forests (TMCF) has been assumed to be lower than in tropical lowland forests due to nutrient limitation, lower temperatures, and frequent cloud immersion, although actual estimates of gross primary productivity (GPP) are very scarce. Here, we present the results of a process-based modeling estimate of GPP, using a soil–plant–atmosphere model, of a high elevation Peruvian TMCF. The model was parameterized with field-measured physiological and structural vegetation variables, and driven with meteorological data from the site. Modeled transpiration corroborated well with measured sap flow, and simulated GPP added up to 16.2 ± SE 1.6 Mg C ha−1 y−1. Dry season GPP was significantly lower than wet season GPP, although this difference was 17% and not caused by drought stress. The strongest environmental controls on simulated GPP were variation of photosynthetic active radiation and air temperature (T air). Their relative importance likely varies with elevation and the local prevalence of cloud cover. Photosynthetic parameters (V cmax and J max) and leaf area index were the most important non-environmental controls on GPP. We additionally compared the modeled results with a recent estimate of GPP of the same Peruvian TMCF derived by the summing of ecosystem respiration and net productivity terms, which added up to 26 Mg C ha−1 y−1. Despite the uncertainties in modeling GPP we conclude that at this altitude GPP is, conservatively estimated, 30–40% lower than in lowland rainforest and this difference is driven mostly by cooler temperatures than changes in other parameters.

Keywords

SPA model sap flow diurnal photosynthesis carbon fluxes Peru Andes gross primary productivity (GPP) net primary productivity (NPP) autotrophic respiration carbon expenditure 

Notes

Acknowledgments

This study is a product of the Andes Biodiversity and Ecosystems Research Group. This study was financed by a grant from the Andes-Amazon program of the Gordon and Betty Moore Foundation, with research grants from the UK Natural Environment Research Council, a Royal Geographical Society (with IBG) geographical fieldwork grant and a scholarship from the School of Geosciences from the University of Edinburgh. We also thank the Asociación para la Conservación de la Cuenca Amazónica (ACCA) for hosting us at the Wayqecha field station and INRENA for permitting us to explore the Peruvian tropical forest. We thank Rob St John for indispensible help with the sap flow system.

Supplementary material

10021_2014_9758_MOESM1_ESM.docx (153 kb)
Supplementary material 1 (DOCX 153 kb)

References

  1. Adamek M, Corre MD, Holscher D. 2009. Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama. J Trop Ecol 25:637–47.CrossRefGoogle Scholar
  2. Bruijnzeel LA, Veneklaas EJ. 1998. Climatic conditions and tropical, montane forest productivity: the fog has not lifted yet. Ecology 79:3–9.CrossRefGoogle Scholar
  3. Čermák J, Deml M, Penka M. 1973. A new method of sap flow rate determination in trees. Biol Plant 15:171–8.CrossRefGoogle Scholar
  4. Čermák J, Kucera J, Nadezhdina N. 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees Struct Funct 18:529–46.CrossRefGoogle Scholar
  5. Domingues TF, Berry JA, Martinelli LA, Ometto J, Ehleringer JR. 2005. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajos National Forest, Para, Brazil). Earth Interact 9(17):1–23.CrossRefGoogle Scholar
  6. Farquhar GD, Caemmerer SV, Berry JA. 1980. A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149:78–90.PubMedCrossRefGoogle Scholar
  7. Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172(3):889–902.Google Scholar
  8. Fisher JB, Malhi Y, Bonal D, Da Rocha HR, De AraÚJo AC, Gamo M, Goulden ML, Hirano T, Huete AR, Kondo H, Kumagai TO, Loescher HW, Miller S, Nobre AD, Nouvellon Y, Oberbauer SF, Panuthai S, Roupsard O, Saleska S, Tanaka K, Tanaka N, Tu KP, Von Randow C. 2009. The land–atmosphere water flux in the tropics. Glob Change Biol 15:2694–714.CrossRefGoogle Scholar
  9. Fisher RA, Williams M, da Costa AL, Malhi Y, da Costa RF, Almeida S, Meir P. 2007. The response of an eastern amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Glob Change Biol 13:2361–78.CrossRefGoogle Scholar
  10. Fisher RA, Williams M, de Lourdes Ruivo M, de Costa AL, Meir P. 2008. Evaluating climatic and soil water controls on evapotranspiration at two amazonian rainforest sites. Agric For Meteorol 148:850–61.CrossRefGoogle Scholar
  11. Fisher RA, Williams M, Do Vale RL, Da Costa AL, Meir P. 2006. Evidence from amazonian forests is consistent with isohydric control of leaf water potential. Plant Cell Environ 29:151–65.PubMedCrossRefGoogle Scholar
  12. Fox A, Williams M, Richardson AD, Cameron D, Gove JH, Quaife T, Ricciuto D, Reichstein M, Tomelleri E, Trudinger CM, Van Wijk MT. 2009. The REFLEX project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data. Agric For Meteorol 149(10):1597–615.CrossRefGoogle Scholar
  13. Girardin CAJ, Malhi Y, AragÃO LEOC, Mamani M, Huaraca Huasco W, Durand L, Feeley KJ, Rapp J, Silva-Espejo JE, Silman M, Salinas N, Whittaker RJ. 2010. Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Change Biol 16:3176–92.CrossRefGoogle Scholar
  14. Girardin CAJ et al. 2013. Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecol Divers 7(1–2):55–69.Google Scholar
  15. Grubb PJ, Whitmore TC. 1966. A comparison of montane and lowland rain forest in Ecuador. II. Climate and its effects on distribution and physiognomy of forests. J Ecol 54:303–33.CrossRefGoogle Scholar
  16. Hirata R, Saigusa N, Yamamoto S, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H. 2008. Spatial distribution of carbon balance in forest ecosystems across East Asia. Agric For Meteorol 148:761–75.CrossRefGoogle Scholar
  17. Hutyra LR, Munger JW, Hammond-Pyle E, Saleska SR, Restrepo-Coupe N, Daube BC, de Camargo PB, Wofsy SC. 2008. Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome. Agric For Meteorol 148:1266–79.CrossRefGoogle Scholar
  18. Kaimal JC, Finnigan JJ. 1994. Atmospheric boundary layer flows: their structure and measurement. Oxford: Oxford University Press.Google Scholar
  19. Kitayama K, Aiba SI. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51.CrossRefGoogle Scholar
  20. Lemmon PE. 1956. A spherical densiometer for estimating forest overstory density. For Sci 2:314–20.Google Scholar
  21. Letts MG, Mulligan M. 2005. The impact of light quality and leaf wetness on photosynthesis in north-west Andean tropical montane cloud forest. J Trop Ecol 21:549–57.CrossRefGoogle Scholar
  22. Malhi Y, Aragao L, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, da Costa ACL, Hutyra LR, Oliveira P, Patino S, Pyle EH, Robertson AL, Teixeira LM. 2009. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob Change Biol 15:1255–74.CrossRefGoogle Scholar
  23. Marthews TR, Malhi Y, Girardin CAJ, Silva Espejo JE, Aragão LEOC, Metcalfe DB, Rapp JM, Mercado LM, Fisher RA, Galbraith DR, Fisher JB, Salinas-Revilla N, Friend AD, Restrepo-Coupe N, Williams RJ. 2012. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Glob Change Biol 18:2882–98.CrossRefGoogle Scholar
  24. McMurtrie RE, Comins HN, Kirschbaum MUF, Wang YP. 1992. Modifying existing forest growth models to take account of effects of elevated CO2. Aust J Bot 40:657–77.CrossRefGoogle Scholar
  25. Meir P, Kruijt B, Broadmeadow M, Kull O, Carswell F, Nobre A, Jarvis PG. 2002. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ 25:343–57.CrossRefGoogle Scholar
  26. Miller SD, Goulden ML, Menton MC, da Rocha HR, de Freitas HC, e Silva Figueira AM, Dias de Sousa CA. 2004. Biometric and micrometeorologicla measurements of tropical forest carbon balance. Ecol Appl 14(Suppl. 4):114–26.Google Scholar
  27. Moser G, Hertel D, Leuschner C. 2007. Altitudinal change in Lai and stand leaf biomass in tropical montane forests: a transect shady in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924–35.CrossRefGoogle Scholar
  28. Raich JW, Russell AE, Vitousek PM. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 78:707–21.Google Scholar
  29. Robertson AL, Malhi Y, Farfan-Amezquita F, Aragão LEOC, Silva Espejo JE, Robertson MA. 2010. Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Glob Change Biol 16(12):3193–204.Google Scholar
  30. Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS. 2004. An experimental test of the causes of forest growth decline with stand age. Ecol. Monogr 74(3):393–414.Google Scholar
  31. Santiago LS, Goldstein G, Meinzer FC, Fownes JH, Mueller-Dombois D. 2000. Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiol 20:673–81.PubMedCrossRefGoogle Scholar
  32. Saxton KE, Rawls WJ, Romberger JS, Papendick RI. 1986. Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–6.CrossRefGoogle Scholar
  33. Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. 2007. Fitting photosynthetic carbon dioxide response curves for C-3 leaves. Plant Cell Environ 30:1035–40.PubMedCrossRefGoogle Scholar
  34. Tanner EVJ, Kapos V, Franco W. 1992. Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73:78–86.CrossRefGoogle Scholar
  35. Tanner EVJ, Kapos V, Freskos S, Healey JR, Theobald AM. 1990. Nitrogen and phosphorus fertilization of Jamaican montane forest trees. J Trop Ecol 6:231–8.CrossRefGoogle Scholar
  36. Tanner EVJ, Vitousek PM, Cuevas E. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22.CrossRefGoogle Scholar
  37. Tjoelker MG, Oleksyn J, Reich PB. 2001. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Glob Change Biol 7(2):223–30.Google Scholar
  38. van de Weg MJ, Meir P, Grace J, Atkin OK. 2009. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecol Divers 2:243–54.CrossRefGoogle Scholar
  39. van de Weg MJ, Meir P, Grace J, Damian Ramos G. 2012. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. Oecologia 168:23–34.PubMedCrossRefGoogle Scholar
  40. Vitousek P, Farrington H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75.CrossRefGoogle Scholar
  41. Waide RB, Zimmerman JK, Scatena FN. 1998. Controls of primary productivity: lessons from the Luquillo Mountains in Puerto Rico. Ecology 79:31–7.CrossRefGoogle Scholar
  42. Wang HQ, Hall CAS, Scatena FN, Fetcher N, Wu W. 2003. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico. For Ecol Manage 179:69–94.CrossRefGoogle Scholar
  43. Williams M, Law BE, Anthoni PM, Unsworth MH. 2001a. Use of a simulation model and ecosystem flux data to examine carbon–water interactions in ponderosa pine. Tree Physiol 21(5):287–98.PubMedCrossRefGoogle Scholar
  44. Williams M, Malhi Y, Nobre AD, Rastetter EB, Grace J, Pereira MGP. 1998. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant Cell Environ 21:953–68.CrossRefGoogle Scholar
  45. Williams M, Rastetter EB, Fernandes DN, Goulden ML, Wofsy SC, Shaver GR, Melillo JM, Munger JW, Fan SM, Nadelhoffer KJ. 1996. Modelling the soil-plant-atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant Cell Environ 19:911–27.CrossRefGoogle Scholar
  46. Williams M, Rastetter EB, Shaver GR, Hobbie JE, Carpino E, Kwiatkowski BL. 2001b. Primary production of an arctic watershed: an uncertainty analysis. Ecol Appl 11:1800–16.CrossRefGoogle Scholar
  47. Wright JK, Williams M, Starr G, McGee J, Mitchell RJ. 2013. Measured and modelled leaf and stand-scale productivity across a soil moisture gradient and a severe drought. Plant Cell Environ 36:467–83.PubMedCrossRefGoogle Scholar
  48. Wullschleger SD. 1993. Biochemical limitations to carbon assimilation in C3 plants: a retrospective analysis of the A/C i curves from 109 species. J Exp Bot 44:907–20.CrossRefGoogle Scholar
  49. Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana AJQ. 2009. Climate dependence of heterotrophic soil respiration from a soil-translocation experiment along a 3000 m tropical forest altitudinal gradient. Eur J Soil Sci 60:895–906.CrossRefGoogle Scholar
  50. Zotz G, Tyree MT, Patino S, Carlton MR. 1998. Hydraulic architecture and water use of selected species from a lower montane forest in Panama. Trees Struct Funct 12:302–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Martine Janet van de Weg
    • 1
    • 2
    Email author
  • Patrick Meir
    • 2
    • 3
  • Mat Williams
    • 4
  • Cécile Girardin
    • 5
  • Yadvinder Malhi
    • 5
  • Javier Silva-Espejo
    • 6
  • John Grace
    • 3
  1. 1.Amsterdam Global Change InstituteVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.School of GeosciencesUniversity of EdinburghEdinburghUK
  3. 3.Research School of BiologyAustralian National UniversityCanberraAustralia
  4. 4.School of GeosciencesUniversity of EdinburghEdinburghUK
  5. 5.Environmental Change Institute, School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  6. 6.Universidad San Antonio Abad del CuscoCuzcoPeru

Personalised recommendations