Ecosystems

, Volume 17, Issue 3, pp 430–441 | Cite as

Carbon Sequestration in a Large Hydroelectric Reservoir: An Integrative Seismic Approach

  • Raquel Mendonça
  • Sarian Kosten
  • Sebastian Sobek
  • Jonathan J. Cole
  • Alex C. Bastos
  • Ana Luiza Albuquerque
  • Simone J. Cardoso
  • Fábio Roland
Article

Abstract

Artificial reservoirs likely accumulate more carbon than natural lakes due to their unusually high sedimentation rates. Nevertheless, the actual magnitude of carbon accumulating in reservoirs is poorly known due to a lack of whole-system studies of carbon burial. We determined the organic carbon (OC) burial rate and the total OC stock in the sediments of a tropical hydroelectric reservoir by combining a seismic survey with sediment core sampling. Our data suggest that no sediment accumulation occurs along the margins of the reservoir and that irregular bottom morphology leads to irregular sediment deposition. Such heterogeneous sedimentation resulted in high spatial variation in OC burial—from 0 to 209 g C m−2 y−1. Based on a regression between sediment accumulation and OC burial rates (R 2 = 0.94), and on the mean reservoir sediment accumulation rate (0.51 cm y−1, from the seismic survey), the whole-reservoir OC burial rate was estimated at 42.2 g C m−2 y−1. This rate was equivalent to 70% of the reported carbon emissions from the reservoir surface to the atmosphere and corresponded to a total sediment OC accumulation of 0.62 Tg C since the reservoir was created. The approach we propose here allows an inexpensive and integrative assessment of OC burial in reservoirs by taking into account the high degree of spatial variability and based on a single assessment. Because burial can be assessed shortly after the survey, the approach combining a seismic survey and coring could, if applied on a larger scale, contribute to a more complete estimate of carbon stocks in freshwater systems in a relatively short period of time.

Keywords

hydroelectric reservoir carbon cycle organic carbon burial seismic survey sedimentation tropical ecosystem 

Notes

Acknowledgments

We are thankful to Marten Scheffer for the insights and critical discussions, to Carlos Henrique Estrada and Anderson Freitas for the support in the field and laboratory analysis, and to Marcio Malafaia for helping with the maps. The authors acknowledge support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES (Raquel Mendonça), NWO-VENI grant 86312012 (Sarian Kosten), The Swedish Research Council Formas (Sebastian Sobek), and Conselho Nacional de Investigação Científica e Tecnológica—CNPq (Fábio Roland). This research was also supported by Grants from Furnas.

Supplementary material

10021_2013_9735_MOESM1_ESM.rtf (420 kb)
Supplementary material 1 (RTF 419 kb)
10021_2013_9735_MOESM2_ESM.rtf (81 kb)
Supplementary material 2 (RTF 81 kb)
10021_2013_9735_MOESM3_ESM.rtf (4.5 mb)
Supplementary material 3 (RTF 4614 kb)

References

  1. Adams EW, Wolfgang S, Anselmetti FS. 2001. Morphology and curvature of delta slopes in Swiss lakes: lessons for the interpretation of clinoforms in seismic data. Sedimentology 48:661–79.CrossRefGoogle Scholar
  2. Alin SR, Johnson TC. 2007. Carbon cycling in large lakes of the world: a synthesis of production, burial, and lake-atmosphere exchange estimates. Global Biogeochem Cycles 21(3):GB3002.CrossRefGoogle Scholar
  3. Allan JD, Castillo MM. 2007. Stream ecology: structure and functioning of running waters. Dordrecht: Springer.CrossRefGoogle Scholar
  4. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, Del Giorgio P, Roland F. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4(9):593–6.CrossRefGoogle Scholar
  5. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nat Geosci 2(9):598–600.CrossRefGoogle Scholar
  6. Bennett SJ, Rhoton FE, Dunbar JA. 2005. Texture, spatial distribution, and rate of reservoir sedimentation within a highly erosive, cultivated watershed: Grenada Lake, Mississippi. Water Resour Res 41(1):W01005.Google Scholar
  7. Blais JM, Kalff J. 1995. The influence of lake morphometry on sediment focusing. Limnol Oceanogr 40(3):582–8.CrossRefGoogle Scholar
  8. Byrnes, Baker JL, Li F. 2002. Quantifying potential measurement errors and uncertainties associated with bathymetric change analysis. Vicksburg: US Army Engineer Research and Development Center.Google Scholar
  9. Cardoso SJ, Enrich-Prast A, Pace ML, Roland F. 2014. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol Oceanogr 59(1):48–54.CrossRefGoogle Scholar
  10. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–85.CrossRefGoogle Scholar
  11. Davis MB, Ford MSJ. 1982. Sediment focusing in Mirror Lake, New-Hampshire. Limnol Oceanogr 27(1):137–50.CrossRefGoogle Scholar
  12. Dean WE. 1999. The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol 21(4):375–93.CrossRefGoogle Scholar
  13. Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26(6):535–8.CrossRefGoogle Scholar
  14. Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem Cycles 22(1):GB1018.CrossRefGoogle Scholar
  15. Dunbar JA, Allen PM, Higley PD. 1999. Multifrequency acoustic profiling for water reservoir sedimentation studies. J Sediment Res 69(2):518–27.CrossRefGoogle Scholar
  16. Einsele G, Yan J, Hinderer M. 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Global Planet Change 30(3):167–95.CrossRefGoogle Scholar
  17. Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408(6812):578–80.PubMedCrossRefGoogle Scholar
  18. Fearnside PM, Pueyo S. 2012. Greenhouse-gas emissions from tropical dams. Nat Clim Change 2(6):382–4.CrossRefGoogle Scholar
  19. Ferland M-E, del Giorgio PA, Teodoru CR, Prairie YT. 2012. Long-term C accumulation and total C stocks in boreal lakes in northern Québec. Global Biogeochem Cycles 26(4):GB0E04.CrossRefGoogle Scholar
  20. Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466(7305):478–81.PubMedCrossRefGoogle Scholar
  21. Gudasz C, Bastviken D, Premke K, Steger K, Tranvik LJ. 2012. Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnol Oceanogr 57(1):163.CrossRefGoogle Scholar
  22. Hanson PC, Bade KL, Carpenter SR, Kratz TK. 2003. Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48(3):1112–19.CrossRefGoogle Scholar
  23. Heirman K, De Batist M, Charlet F, Moernaut J, Chapron E, Brümmer R, Pino M, Urrutia R. 2011. Detailed seismic stratigraphy of Lago Puyehue: implications for the mode and timing of glacier retreat in the Chilean Lake District. J Quat Sci 26(7):665–74.CrossRefGoogle Scholar
  24. Hilbe M, Anselmetti FS, Eilertsen RS, Hansen L, Wildi W. 2011. Subaqueous morphology of Lake Lucerne (Central Switzerland): implications for mass movements and glacial history. Swiss J Geosci 104(3):425–43.CrossRefGoogle Scholar
  25. ICOLD. 2003. International Commission On Large Dams. World register of dams. http://www.icold-cigb.org/.
  26. IPCC. 2007. Intergovernmental Panel on Climate Change. http://www.ipcc.chpp.
  27. James WF, Barko JW. 1993. Sediment resuspension, redeposition, and focusing in a small dimictic reservoir. Can J Fish Aquat Sci 50(5):1023–8.CrossRefGoogle Scholar
  28. Kastowski M, Hinderer M, Vecsei A. 2011. Long-term carbon burial in European lakes: analysis and estimate. Global Biogeochem Cycles 25(3):GB3019.CrossRefGoogle Scholar
  29. Kent C, Wong J. 1982. An index of littoral-zone complexity and its measurement. Can J Fish Aquat Sci 39(6):847–53.CrossRefGoogle Scholar
  30. Kortelainen P, Pajunen H. 2000. Carbon store in Finnish lake sediments: a preliminary estimate. Geol Surv Finl 29:83–92.Google Scholar
  31. Kortelainen P, Pajunen H, Rantakari M, Saarnisto M. 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Glob Change Biol 10(10):1648–53.CrossRefGoogle Scholar
  32. Kunz MJ, Anselmetti FS, Wüest A, Wehrli B, Vollenweider A, Thüring S, Senn DB. 2011. Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe). J Geophys Res Biogeosci 116(G3):G03003.CrossRefGoogle Scholar
  33. Lyons RP, Scholz CA, Buoniconti MR, Martin MR. 2011. Late Quaternary stratigraphic analysis of the Lake Malawi Rift, East Africa: an integration of drill-core and seismic-reflection data. Palaeogeogr Palaeoclimatol Palaeoecol 303(1):20–37.CrossRefGoogle Scholar
  34. Mackay EB, Jones ID, Folkard AM, Barker P. 2012. Contribution of sediment focussing to heterogeneity of organic carbon and phosphorus burial in small lakes. Freshw Biol 57(2):290–304.CrossRefGoogle Scholar
  35. Mendonça R, Kosten S, Sobek S, Barros N, Cole JJ, Tranvik L, Roland F. 2012. Hydroelectric carbon sequestration. Nat Geosci 5(12):838–40.CrossRefGoogle Scholar
  36. Mulholland PJ, Elwood JW. 1982. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34(5):490–9.CrossRefGoogle Scholar
  37. Mullins HT, Eyles N, Hinchey EJ. 1991. High-resolution seismic stratigraphy of Lake Mcdonald, Glacier National Park, Montana, USA. Arct Alp Res 23(3):311–19.CrossRefGoogle Scholar
  38. Odhiambo BK, Boss SK. 2004. Integrated echo sounder, GPS, and GIS for reservoir sedimentation studies: examples from two Arkansas Lakes. J Am Water Resour Assoc 40(4):981–97.CrossRefGoogle Scholar
  39. Olsson IU. 1991. Accuracy and precision in sediment chronology. Hydrobiologia 214:25–34.CrossRefGoogle Scholar
  40. Olsson IU. 2009. Radiocarbon dating history: early days, questions, and problems met. Radiocarbon 51(1):1–43.Google Scholar
  41. Ometto JP, Cimbleris AC, dos Santos MA, Rosa LP, Abe D, Tundisi JG, Stech JL, Barros N, Roland F. 2013. Carbon emission as a function of energy generation in hydroelectric reservoirs in Brazilian dry tropical biome. Energy Policy 58:109–16.CrossRefGoogle Scholar
  42. Pace ML, Prairie YT. 2004. Respiration in lakes. In: del Giorgio PA, Williams, PJleB, Eds. Respiration in aquatic ecosystems. Oxford: Oxford University Press. p. 103–21.Google Scholar
  43. Rangel LM, Silva LH, Rosa P, Roland F, Huszar VL. 2012. Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693(1):13–28.CrossRefGoogle Scholar
  44. Ritchie JC. 1989. Carbon content of sediments of small reservoirs. J Am Water Resour Assoc 25(2):301–8.CrossRefGoogle Scholar
  45. Roland F, Vidal LO, Pacheco FS, Barros NO, Assireu A, Ometto JP, Cimbleris ACP, Cole JJ. 2010. Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs. Aquat Sci 72(3):283–93.CrossRefGoogle Scholar
  46. Schlesinger WH. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348(6298):232–4.CrossRefGoogle Scholar
  47. Shotbolt LA, Thomas AD, Hutchinson SM. 2005. The use of reservoir sediments as environmental archives of catchment inputs and atmospheric pollution. Prog Phys Geogr 29(3):337–61.CrossRefGoogle Scholar
  48. Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54(6):2243.CrossRefGoogle Scholar
  49. Sobek S, DelSontro T, Wongfun N, Wehrli B. 2012. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett 39(1):L01401.CrossRefGoogle Scholar
  50. St. Louis VL, Kelly CA, Duchemin É, Rudd JW, Rosenberg DM. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50(9):766–75.CrossRefGoogle Scholar
  51. Stallard RF. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochem Cycles 12(2):231–57.CrossRefGoogle Scholar
  52. Thornton KW, Kimmel BL, Payne FE. 1990. Reservoir limnology: ecological perspectives. New York: Wiley.Google Scholar
  53. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54(6):2298–314.CrossRefGoogle Scholar
  54. Tunnicliffe J, Church M, Enkin RJ. 2012. Postglacial sediment yield to Chilliwack Lake, British Columbia, Canada. Boreas 41(1):84–101.CrossRefGoogle Scholar
  55. Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JP. 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planet Change 39(1):169–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Raquel Mendonça
    • 1
    • 2
  • Sarian Kosten
    • 2
    • 3
    • 4
  • Sebastian Sobek
    • 5
  • Jonathan J. Cole
    • 6
  • Alex C. Bastos
    • 7
  • Ana Luiza Albuquerque
    • 8
  • Simone J. Cardoso
    • 1
  • Fábio Roland
    • 1
  1. 1.Laboratory of Aquatic EcologyFederal University of Juiz de ForaJuiz de ForaBrazil
  2. 2.Department of Aquatic Ecology and Water Quality ManagementWageningen UniversityWageningenThe Netherlands
  3. 3.Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)Berlin/NeuglobsowGermany
  4. 4.Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland ResearchRadboud University NijmegenNijmegenThe Netherlands
  5. 5.Department of Ecology and Genetics, LimnologyUppsala UniversityUppsalaSweden
  6. 6.Cary Institute of Ecosystem StudiesMillbrookUSA
  7. 7.Department of Oceanography and EcologyUniversidade Federal do Espírito SantoVitóriaBrazil
  8. 8.Departamento de GeoquímicaUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations