Ecosystems

, Volume 16, Issue 8, pp 1517–1535

Environmental, Social, and Management Drivers of Soil Nutrient Mass Balances in an Extensive Andean Cropping System

Article

Abstract

Sustainable nutrient cycling in agroecosystems combining grazing and crops has global ramifications for protecting these ecosystems and for the livelihoods they support. We sought to understand environmental, management, and social drivers of nutrient management and sustainability in Andean grazing/crop systems. We assessed the impact of farmer wealth, fields’ proximity to villages, topography, and rangeland net primary productivity (NPP) on mass balances for nitrogen (N), phosphorus (P), and potassium (K) of 43 fields. Wealthier farmers applied greater total amounts (kg) of manure nutrients. However, higher manure application rates (kg ha−1) were associated with field proximity and NPP rather than wealth. Manure P inputs in far fields (> 500-m distant) were half those in near fields. Harvest exports increased with manure inputs (P < 0.001) so that balances varied less than either of these flows. Erosion nutrient losses in steeper far fields matched crop exports, and yields declined with increasing field slope (P < 0.001), suggesting that erosion reduces productivity. Balances for P were slightly positive in near and far fields (+2.2 kg P ha−1 y−1, combined mean) when calculated without erosion, but zero in near fields and negative in far fields with erosion included (−6.1 kg P ha−1 y−1 in far fields). Near/far differences in both inputs and erosion thus drove P limitation. Crop K exports dominated K balances, which were negative even without accounting for erosion. Modeled intensification scenarios showed that remediating far field deficits would require P addition and erosion reduction. Management nested within environmental constraints (NPP, erosion) rather than socioeconomic status drives soil nutrient sustainability in these agroecosystems. Time-lags between management and long-term degradation are a principal sustainability challenge to farming in these montane grazing/crop agroecosystems.

Keywords

nutrient mass balances Andes soil erosion rangeland mixed cropping systems time-lags Bolivia manure phosphorus potassium 

Supplementary material

10021_2013_9699_MOESM1_ESM.rtf (180 kb)
Supplementary material (RTF 660 kb)

References

  1. Achard F, Banoin M. 2003. Fallows, forage production and nutrient transfers by livestock in Niger. Nutr Cycl Agroecosyst 65:183–9.CrossRefGoogle Scholar
  2. Aganga AA, Mosimanyana N. 2001. Gender impact on sheep and goat production in Botswana. A case of Gaborone region. J Agric Tropics Subtrop 102:15–18.Google Scholar
  3. Alegre JC, Felipe-Morales C, LaTorre B. 1990. Soil erosion studied in Peru. J Soil Water Conserv 45:417–20.Google Scholar
  4. Antil RS, Janssen BH, Lantinga EA. 2009. Laboratory and greenhouse assessment of plant availability of organic N in animal manure. Nutr Cycl Agroecosyst 85:95–106.CrossRefGoogle Scholar
  5. Arriaga-Jordan CM, Pedraza-Fuentes AM, Nava-Bernal EG, Chavez-Mejia MC, Castelan-Ortega OA. 2005. Livestock agrodiversity of Mazahua smallholder Campesino systems in the highlands of Central Mexico. Hum Ecol 33:821–45.CrossRefGoogle Scholar
  6. Augustine DJ. 2003. Long-term, livestock-mediated redistribution of nitrogen and phosphorus in an East African savanna. J Appl Ecol 40:137–49.CrossRefGoogle Scholar
  7. Baijukya F-P, de-Ridder N, Masuki K-F, Giller K-E. 2005. Dynamics of banana-based farming systems in Bukoba district, Tanzania: changes in land use, cropping and cattle keeping. Agric Ecosyst Environ 106:395–406.CrossRefGoogle Scholar
  8. Baker LA, Hope D, Xu Y, Edmonds J, Lauver L. 2001. Nitrogen balance for the central Arizona–Phoenix (CAP) ecosystem. Ecosystems 4:582–602.CrossRefGoogle Scholar
  9. Berry P-M, Stockdale E-A, Sylvester-Bradley R, Philipps L, Smith K-A, Lord E-I, Watson C-A, Fortune S. 2003. N, P and K budgets for crop rotations on nine organic farms in the UK. Soil Use Manage 19:112–18.CrossRefGoogle Scholar
  10. Boesen J, Friis-Hansen E. 2001. Soil fertility management in semi-arid agriculture in Tanzania: farmers’ perceptions and management practices. CDR Working Papers, 31 p.Google Scholar
  11. Bunce M, Rodwell LD, Gibb R, Mee L. 2008. Shifting baselines in fishers’ perceptions of island reef fishery degradation. Ocean Coast Manage 51:285–302.CrossRefGoogle Scholar
  12. Carpenter S, Walker B, Anderies JM, Abel N. 2001. From metaphor to measurement: resilience of what to what? Ecosystems 4:765–81.CrossRefGoogle Scholar
  13. CIF-UMSS (Centro de Investigación en Forrajes: Universidad San Simón). 2013. Guía ilustrada de especies forrajeras nativas de la zona andina en Bolivia. Cochabamba: Universidad Mayor San Simón. p 191.Google Scholar
  14. Cobo JG, Dercon G, Monje C, Mahembe P, Gotosa T, Nyamangara J, Delve RJ, Cadisch G. 2009. Cropping strategies, soil fertility investment and land management practices by smallholder farmers in communal and resettlement areas in Zimbabwe. Land Degrad Dev 20:492–508.CrossRefGoogle Scholar
  15. Cobo JG, Dercon G, Cadisch G. 2010. Nutrient balances in African land use systems across different spatial scales: a review of approaches, challenges and progress. Agric Ecosyst Environ 136:1–15.CrossRefGoogle Scholar
  16. Devine JA, Haedrich RL. 2011. The role of environmental conditions and exploitation in determining dynamics of redfish (Sebastes species) in the Northwest Atlantic. Fish Oceanogr 20:66–81.CrossRefGoogle Scholar
  17. Duncan Fairlie T, Jacob DJ, Park RJ. 2007. The impact of transpacific transport of mineral dust in the United States. Atmospheric Environ 41:1251–66.CrossRefGoogle Scholar
  18. Elias E, Morse S, Belshaw D-G-R. 1998. Nitrogen and phosphorus balances of Kindo Koisha farms in southern Ethiopia. Agric Ecosyst Environ 71:93–113.CrossRefGoogle Scholar
  19. Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N. 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606.Google Scholar
  20. ERSDAC. 2007. ASTER Global Digital Elevation Model. http.://www.ersdac.or.jp/GDEM/E/index.html.
  21. FAO. 2010. SD Dimensions Special: Global Climate Maps. SD Dimensions. FAO Sustainable Development Department. http://www.fao.org/sd/EIdirect/climate/EIsp0002.htm.
  22. Giller KE, Rowe EC, de Ridder N, van Keulen H. 2006. Resource use dynamics and interactions in the tropics: scaling up in space and time. Agric Syst 88:8–27.CrossRefGoogle Scholar
  23. Goland C. 1993. Field Scattering as agricultural risk management: a case study from Cuyo Cuyo, Department of Puno, Peru. Mountain Res Dev 13:317–38.CrossRefGoogle Scholar
  24. Haigh MJ. 1977. The use of erosion pins in the study of slope evolution. In: Finlayson B, Ed. British Geomorphological Research Group, Technical Bulletin 18. Norwich, England: Geo Books. p 31–49.Google Scholar
  25. Haileslassie A, Priess J, Veldkamp E, Teketay D, Lesschen JP. 2005. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric Ecosys Environ 108:1–16.CrossRefGoogle Scholar
  26. Harris F. 1999. Nutrient management strategies of small-holder farmers in a short-fallow farming system in north-east Nigeria. Geogr J 165:275–85.CrossRefGoogle Scholar
  27. Hudson NW. 1993. Field measurement of soil erosion and runoff. Food and Agriculture Organization of the United Nations, Rome. 139 pGoogle Scholar
  28. Imhoff ML, Lawrence WT, Elvidge CD, Paul T, Levine E, Privalsky MV. 1997. Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the United States. Remote Sens Environ 59:105–17.CrossRefGoogle Scholar
  29. Jones A. 2011. Overcoming barriers to improving infant and young child feeding practices in the Bolivian Andes: the role of agriculture and rural livelihoods. Doctoral dissertation, Cornell University, Ithaca, NYGoogle Scholar
  30. Kaihura FBS, Kullaya IK, Kilasara M, Aune JB, Singh BR, Lal R. 1999. Soil quality effects of accelerated erosion and management systems in three eco-regions of Tanzania. Soil Tillage Res 53:59–70.CrossRefGoogle Scholar
  31. Kalra YP. 1998. Handbook of reference methods for plant analysis. CRC Press, Boca Raton, FL. 300 pGoogle Scholar
  32. Kihara J, Vanlauwe B, Waswa B, Kimetu JM, Chianu J, Bationo A. 2010. Strategic phosphorus application in legume-cereal rotations increases land productivity and profitability in western Kenya. Exp Agric 46:35–52.CrossRefGoogle Scholar
  33. Lal R. 1990. Soil erosion in the tropics: principles and management. New York: McGraw-Hill. 580 pGoogle Scholar
  34. Lal R. 1998. Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17:319–464.CrossRefGoogle Scholar
  35. Lesschen JP, Stoorvogel JJ, Smaling EMA, Heuvelink GBM, Veldkamp A. 2007. A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutr Cycl Agroecosyst 78:111–31.CrossRefGoogle Scholar
  36. Lightfoot C, Noble R. 2001. Tracking the ecological soundness of farming systems: instruments and indicators. J Sustain Agric 19:9–29.CrossRefGoogle Scholar
  37. Mayer E. 1979. Land-use in the Andes: ecology and agriculture in the Mantaro Valley of Peru with special reference to potatoes. Lima, Peru: International Potato Center. 115 pGoogle Scholar
  38. McCorkle CM, Ed. 1990. Improving Andean sheep and Alpaca production: recommendations from a decade of research in Peru. Columbia, Missouri: University of Missouri-Columbia.Google Scholar
  39. Meneses R. 1998. Asociación de cereales menores con leguminosas y momentos de corte para producción de forraje. Compendio de trabajos presentandos por el Proyecto Rhizobiología (Cochabamba) en eventos y publicaciones de otras instituciones.Google Scholar
  40. Montgomery DR. 2007. Soil erosion and agricultural sustainability. Proc Nat Acad Sci 104:13268–72.PubMedCrossRefGoogle Scholar
  41. Mortimore M, Harris F. 2005. Do small farmers’ achievements contradict nutrient depletion scenarios for Africa? Land Use Policy 22:43–56.CrossRefGoogle Scholar
  42. Neighbors World. 2006. Linea de base, proyecto Heifer de seguridad alimentaria Norte de Potosí. Cochabamba, Bolivia: Vecinos mundiales. 28 ppGoogle Scholar
  43. Nkonya E, Kaizzi C, Pender J. 2005. Determinants of nutrient balances in a maize farming system in eastern Uganda. Agric Syst 85:155–82.CrossRefGoogle Scholar
  44. NRCS. 2010. Crop Nutrient Tool. Natural Resources Conservation Service, U.S. Department of Agriculture, Beltsville. http://plants.usda.gov/npk/main.
  45. Pacheco P. 2009. Smallholder livelihoods, wealth and deforestation in the Eastern Amazon. Hum Ecol 37:27–41.CrossRefGoogle Scholar
  46. Pendleton LH, Howe EL. 2002. Market integration, development, and smallholder forest clearance. Land Econ 78:1–19.CrossRefGoogle Scholar
  47. Pestalozzi H. 2000. Sectoral fallow systems and the management of soil fertility: the rationality of indigenous knowledge in the high Andes of Bolivia. Mt Res Dev 20:64–71.CrossRefGoogle Scholar
  48. Phiri AT, Njoloma JP, Kanyama-Phiri GY, Snapp S, Lowole MW. 2010. Maize yield response to the combined application of Tundulu rock phosphate and Pigeon Pea residues in Kasungu, Central Malawi. Afr J Agric Res 5:1235–42.Google Scholar
  49. Pieri CJ. 1989. Fertility of soils: a future for farming in the West African Savanna. Berlin: Springer. 348 pGoogle Scholar
  50. Powell JM, FernandezRivera S, Hiernaux P, Turner MD. 1996. Nutrient cycling in integrated rangeland/cropland systems of the Sahel. Agric Syst 52:143–70.CrossRefGoogle Scholar
  51. Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), Agriculture Handbook 703. Beltsville, MD: USDA Agricultural Research Service. 384 pGoogle Scholar
  52. Romero-Leon C. 2005. A multi-scale approach for erosion assessment in the Andes. The Hague: Wageningen University. 147 pGoogle Scholar
  53. Ross SM, Izaurralde RC, Janzen HH, Robertson JA, McGill WB. 2008. The nitrogen balance of three long-term agroecosystems on a boreal soil in western Canada. Agric Ecosyst Environ 127:241–50.CrossRefGoogle Scholar
  54. Rowe E, Vanwijk M, Deridder N, Giller K. 2006. Nutrient allocation strategies across a simplified heterogeneous African smallholder farm. Agric Ecosyst Environ 116:60–71.CrossRefGoogle Scholar
  55. Rufino MC, Dury J, Tittonell P, van Wijk MT, Herrero M, Zingore S, Mapfumo P, Giller KE. 2011. Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agric Syst 104:175–90.CrossRefGoogle Scholar
  56. Saberwal VK. 1996. Pastoral politics: Gaddi grazing, degradation, and biodiversity conservation in Himachal Pradesh, India. Conserv Biol 10:741–9.CrossRefGoogle Scholar
  57. Schechambo F, Sosoveli H, Kisanga D. 1999. Rethinking natural resource degradation in semi-arid sub-Saharan Africa: the case of semi-arid Tanzania. Dar Es Salaam, Tanzania: Overseas Development Institute. 58 p.Google Scholar
  58. Scherr SJ. 2000. A downward spiral? Research evidence on the relationship between poverty and natural resource degradation. Food Policy 25:479–98.CrossRefGoogle Scholar
  59. Schlecht E, Hiernaux P, Achard F, Turner MD. 2004. Livestock related nutrient budgets within village territories in western Niger. Nutr Cycl Agroecosyst 68:199–211.CrossRefGoogle Scholar
  60. Smaling E-M-A, Fresco L-O, De-Jager A. 1996. Classifying, monitoring and improving soil nutrient stocks and flows in African agriculture. AMBIO 25:492–6.Google Scholar
  61. Terrazas F, Suarez V, Gardner G, Thiele G, Devaux A, Walker T. 1998. Diagnosing potato productivity in farmers’ fields in Bolivia, Working paper 1998-5. Social Science Department, International Potato Center (CIP), Lima, PeruGoogle Scholar
  62. Thorne PJ, Tanner JC. 2002. Livestock and nutrient cycling in crop–animal systems in Asia. Agric Syst 71:111–26.CrossRefGoogle Scholar
  63. Valente JF, Oliver R. 1993. Fertisuelos: evaluación de la fertilidad de los suelos del antiplano, valle central y los llanos de Bolivia. Rome: FAO. 123 pGoogle Scholar
  64. Vanek S. 2011. Legume-phosphorus synergies in mountain agroecosystems: field nutrient balances, soil fertility gradients, and effects on legume attributes and nutrient cycling in the Bolivian Andes. Doctoral dissertation, Cornell University.Google Scholar
  65. Villarroel J, Augstburger F, Meneses R. 1986. Fixation and contribution of nitrogen to the soil by Lupinus mutabilis, and its effects on following barley. Proceedings of the Fourth International Lupin Conference. p 308.Google Scholar
  66. Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS. 2009. Nutrient imbalances in agricultural development. Science 324:1519–20.PubMedCrossRefGoogle Scholar
  67. Wortmann CS, Kaizzi CK. 1998. Nutrient balances and expected effects of alternative practices in farming systems of Uganda. Agric Ecosyst Environ 71:115–29.CrossRefGoogle Scholar
  68. Yirga C, Hassan RM. 2006. Poverty soil conservation efforts among smallholder farmers in the central highlands of Ethiopia. South Afr J Econ Manage Sci 9:244–61.Google Scholar
  69. Zhao M, Nemani R, Running S. 2008. ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD17A3.LATEST/Improved_MOD17A3_C5.1_GEOTIFF_1km/,fileNpp_QC_1km_C5.1_mean_00_to_06.tif. University of Montana Numerical Terradynamic Simulation Group, Bozeman, MT.
  70. Zhou ZY, Li FR, Chen SK, Zhang HR, Li GD. 2011. Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland. Plant and Soil 341:257–68.CrossRefGoogle Scholar
  71. Zimmerer KS. 1993. Soil-erosion and labor shortages in the Andes with special reference to Bolivia, 1953–1991: implications for conservation-with-development. World Dev 21:1659–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Crop and Soil SciencesCornell UniversityIthacaUSA
  2. 2.Department of HorticultureCornell UniversityNew YorkUSA

Personalised recommendations