Advertisement

Ecosystems

, Volume 16, Issue 7, pp 1325–1335 | Cite as

Non-trophic Interactions Control Benthic Producers on Intertidal Flats

  • Serena DonadiEmail author
  • Joëlle Westra
  • Ellen J. Weerman
  • Tjisse van der Heide
  • Els M. van der Zee
  • Johan van de Koppel
  • Han Olff
  • Theunis Piersma
  • Henk W. van der Veer
  • Britas Klemens Eriksson
Article

Abstract

The importance of positive effects of ecosystem engineers on associated communities is predicted to increase with environmental stress. However, incorporating such non-trophic interactions into ecological theory is not trivial because facilitation of associated species is conditional on both the type of engineer and the type of abiotic stress. We tested the influence of two allogenic ecosystem engineers (lugworms, Arenicola marina L. and cockles, Cerastoderma edule L.) on the main primary producers (microphytobenthos) of the tidal flats, under different abiotic stresses controlled by reefs of blue mussels (Mytilus edulis L.). We added 25,000 cockles or 2,000 lugworms to 5 × 5 m plots, both in a muddy site with high sedimentation rates located coastward of a mussel bed, and in a sandy site without mussels and characterized by high hydrodynamic stress. After a year, cockles increased algal biomass in the sandy area, but not in the mussel bed site, where high values were measured in all plots. However, lugworms did not affect algal biomass in any of the sites. Field measurements suggest that cockles outweighed negative effects of water currents in the site without mussels by locally increasing sediment stability, whereas mussels overruled the effects of cockles in the wake of the reefs through hydrodynamic stress alleviation and/or biodeposition. Our results suggest that non-trophic interactions by ecosystem engineering bivalves control primary production of intertidal areas, and that the sediment-stabilizing effect of cockles plays a crucial role where the overruling effects of mussel beds are not present.

Keywords

ecosystem engineering facilitation hydrodynamic stress microphytobenthos Cerastoderma edule Arenicola marina Mytilus edulis Wadden Sea 

Notes

Acknowledgments

We thank Imke Gerwen, Marc Bartelds, Judith Westveer, Jeroen Kuypers, Tim Ruiter, Jim de Fouw, Karin de Boer, Stefania Gemignani, Nicola Stefani, Katrin Sieben, Guus Diepenmaat, and Maria van Leeuwe for help in the field; Johan Eklöf for advise on the experimental design; and three anonymous reviewers who greatly contributed to improve our manuscript. We are grateful to Vereniging Natuurmonumenten for granting us permission for the field work on the tidal flats. This study was financed by a grant from the ZKO program of the Netherlands Organization of Scientific Research (NWO) to BKE (Grant No. 839.08.310).

Supplementary material

10021_2013_9686_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 29 kb)

References

  1. Andersen TJ, Lanuru M, van Bernem C, Pejrup M, Riethmueller R. 2010. Erodibility of a mixed mudflat dominated by microphytobenthos and Cerastoderma edule, East Frisian Wadden Sea, Germany. Estuar Coast Shelf Sci 87:197–206.CrossRefGoogle Scholar
  2. Banta GT, Holmer M, Jensen MH, Kristensen E. 1999. Effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in a sandy marine sediment. Aquat Microb Ecol 19:189–204.CrossRefGoogle Scholar
  3. Bertness MD, Callaway R. 1994. Positive interactions in communities. Trends Ecol Evol 9:191–3.PubMedCrossRefGoogle Scholar
  4. Beukema JJ, Dekker R. 2005. Decline of recruitment success in cockles and other bivalves in the Wadden Sea: possible role of climate change, predation on postlarvae and fisheries. Mar Ecol Prog Ser 287:149–67.CrossRefGoogle Scholar
  5. Beukema JJ, Devlas J. 1979. Population parameters of the lugworm, Arenicola marina, living on tidal flats in the Dutch Wadden Sea. Neth J Sea Res 13:331–53.CrossRefGoogle Scholar
  6. Blanchard GF, Paterson DM, Stal LJ, Richard P, Galois R, Huet V, Kelly J, Honeywill C, de Brouwer J, Dyer K, Christie M, Seguignes M. 2000. The effect of geomorphological structures on potential biostabilisation by microphytobenthos on intertidal mudflats. Cont Shelf Res 20:1243–56.CrossRefGoogle Scholar
  7. Bracken MES. 2004. Invertebrate-mediated nutrient loading increases growth of an intertidal macroalga. J Phycol 40:1032–41.CrossRefGoogle Scholar
  8. Bruno JF, Bertness MD. 2001. Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME, Eds. Marine community ecology. Sunderland, MA: Sinauer. p 201–18.Google Scholar
  9. Bruno JF, Stachowicz JJ, Bertness MD. 2003. Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–25.CrossRefGoogle Scholar
  10. Bulleri F, Cristaudo C, Alestra T, Benedetti-Cecchi L. 2011. Crossing gradients of consumer pressure and physical stress on shallow rocky reefs: a test of the stress-gradient hypothesis. J Ecol 99:335–44.CrossRefGoogle Scholar
  11. Callaway RM. 1997. Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112:143–9.CrossRefGoogle Scholar
  12. Callaway RM, Walker LR. 1997. Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–65.CrossRefGoogle Scholar
  13. Choler P, Michalet R, Callaway RM. 2001. Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–308.CrossRefGoogle Scholar
  14. Ciutat A, Widdows J, Readman JW. 2006. Influence of cockle Cerastoderma edule bioturbation and tidal-current cycles on resuspension of sediment and polycyclic aromatic hydrocarbons. Mar Ecol Prog Ser 328:51–64.CrossRefGoogle Scholar
  15. Ciutat A, Widdows J, Pope ND. 2007. Effect of Cerastoderma edule density on near-bed hydrodynamics and stability of cohesive muddy sediments. J Exp Mar Biol Ecol 346:114–26.CrossRefGoogle Scholar
  16. Crain CM, Bertness ND. 2005. Community impacts of a tussock sedge: is ecosystem engineering important in benign habitats? Ecology 86:2695–704.CrossRefGoogle Scholar
  17. Crain CM, Bertness MD. 2006. Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56:211–18.CrossRefGoogle Scholar
  18. Daleo P, Iribarne O. 2009. Beyond competition: the stress-gradient hypothesis tested in plant–herbivore interactions. Ecology 90:2368–74.PubMedCrossRefGoogle Scholar
  19. Dayton PK. 1972. Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. In: Proceedings of the colloquium on conservation problems in Antarctica. Lawrence, KS: Allen Press. pp 81–95.Google Scholar
  20. de Jong DJ, de Jonge VN. 1995. Dynamics and distribution of microphytobenthic chlorophyll a in the Western Scheldt Estuary (SW Netherlands). Hydrobiologia 311:21–30.CrossRefGoogle Scholar
  21. de Jonge VN, van Beusekom JEE. 1995. Wind-induced and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems Estuary. Limnol Oceanogr 40:766–78.CrossRefGoogle Scholar
  22. Donadi S, van der Heide T, van der Zee EM, Eklöf JS, van de Koppel J, Weerman EJ, Piersma T, Olff H, Eriksson BK. 2013. Cross-habitat interactions among bivalve species control community structure on intertidal flats. Ecology 94:489–98.PubMedCrossRefGoogle Scholar
  23. Eriksson BK, van der Heide T, van de Koppel J, Piersma T, van der Veer HW, Olff H. 2010. Major changes in the ecology of the Wadden Sea: human impacts, ecosystem engineering and sediment dynamics. Ecosystems 13:752–64.CrossRefGoogle Scholar
  24. Filgueira R, Castro BG. 2011. Study of the trophic web of San Simon Bay (Ria de Vigo) by using stable isotopes. Cont Shelf Res 31:476–87.CrossRefGoogle Scholar
  25. Flach EC. 1996. The influence of the cockle, Cerastoderma edule, on the macrozoobenthic community of tidal flats in the Wadden Sea. Mar Ecol 17:87–98.CrossRefGoogle Scholar
  26. Graf G, Rosenberg R. 1997. Bioresuspension and biodeposition: a review. J Mar Syst 11:269–78.CrossRefGoogle Scholar
  27. Herman PMJ, Middelburg JJ, Heip CHR. 2001. Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project. Cont Shelf Res 21:2055–71.CrossRefGoogle Scholar
  28. Jeffrey SW, Humphrey GF. 1975. New spectrophotometric equation for determining chlorophyll a, b, c 1 and c 2. Biochem Physiol Pflanz 167:194–204.Google Scholar
  29. Jensen KT. 1992. Dynamics and growth of the cockle, Cerastoderma edule, on an intertidal mud-flat in the Danish Wadden sea: effects of submersion time and density. Neth J Sea Res 28:335–45.CrossRefGoogle Scholar
  30. Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69:373–86.CrossRefGoogle Scholar
  31. Kawai T, Tokeshi M. 2007. Testing the facilitation-competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors. Proc R Soc B Biol Sci 274:2503–8.CrossRefGoogle Scholar
  32. Kefi S, Berlow EL, Wieters EA, Navarrete SA, Petchey OL, Wood SA, Boit A, Joppa LN, Lafferty KD, Williams RJ, Martinez ND, Menge BA, Blanchette CA, Iles AC, Brose U. 2012. More than a meal…integrating non-feeding interactions into food webs. Ecol Lett 15:291–300.CrossRefGoogle Scholar
  33. Kraan C, Dekinga A, Piersma T. 2011. Now an empty mudflat: past and present benthic abundances in the western Dutch Wadden Sea. Helgol Mar Res 65:51–8.CrossRefGoogle Scholar
  34. Lebreton B, Richard P, Galois R, Radenac G, Pfleger C, Guillou G, Mornet F, Blanchard GF. 2011. Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: evidence from stable isotope and fatty acid analyses. Estuar Coast Shelf Sci 92:140–53.CrossRefGoogle Scholar
  35. Legendre P, Legendre L. 1998. Numerical ecology. In: Developments in environmental modelling, vol 20, 2nd edn. Amsterdam: Elsevier, ISBN-9780444538680.Google Scholar
  36. Lohrer AM, Thrush SF, Gibbs MM. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431:1092–5.PubMedCrossRefGoogle Scholar
  37. Lohrer AM, Halliday NJ, Thrush SF, Hewitt JE, Rodil IF. 2010. Ecosystem functioning in a disturbance-recovery context: contribution of macrofauna to primary production and nutrient release on intertidal sandflats. J Exp Mar Biol Ecol 390:6–13.CrossRefGoogle Scholar
  38. Lotze HK, Reise K, Worm B, van Beusekom J, Busch M, Ehlers A, Heinrich D, Hoffmann RC, Holm P, Jensen C, Knottnerus OS, Langhanki N, Prummel W, Vollmer M, Wolff WJ. 2005. Human transformations of the Wadden Sea ecosystem through time: a synthesis. Helgol Mar Res 59:84–95.CrossRefGoogle Scholar
  39. Maestre FT, Callaway RM, Valladares F, Lortie CJ. 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205.CrossRefGoogle Scholar
  40. Montserrat F, Van Colen C, Provoost P, Milla M, Ponti M, Van den Meersche K, Ysebaert T, Herman PMJ. 2009. Sediment segregation by biodiffusing bivalves. Estuar Coast Shelf Sci 83:379–91.CrossRefGoogle Scholar
  41. Nacken N, Reise K. 2000. Effects of herbivorous birds on intertidal seagrass beds in the northern Wadden Sea. Helgol Mar Res 54:87–94.CrossRefGoogle Scholar
  42. Needham HR, Pilditch CA, Lohrer AM, Thrush SF. 2011. Context-specific bioturbation mediates changes to ecosystem functioning. Ecosystems 14:1096–109.CrossRefGoogle Scholar
  43. Neumeier U, Lucas CH, Collins M. 2006. Erodibility and erosion patterns of mudflat sediments investigated using an annular flume. Aquat Ecol 40:543–54.CrossRefGoogle Scholar
  44. Newell RIE, Koch EW. 2004. Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 27:793–806.CrossRefGoogle Scholar
  45. Olff H, Alonso D, Berg MP, Eriksson BK, Loreau M, Piersma T, Rooney N. 2009. Parallel ecological networks in ecosystems. Philos Trans R Soc B Biol Sci 364:1755–79.CrossRefGoogle Scholar
  46. Piersma T, Koolhaas A, Dekinga A, Beukema JJ, Dekker R, Essink K. 2001. Long-term indirect effects of mechanical cockle-dredging on intertidal bivalve stocks in the Wadden Sea. J Appl Ecol 38:976–90.CrossRefGoogle Scholar
  47. Reise K. 2002. Sediment mediated species interactions in coastal waters. J Sea Res 48:127–41.CrossRefGoogle Scholar
  48. Sauriau PG, Kang CK. 2000. Stable isotope evidence of benthic microalgae-based growth and secondary production in the suspension feeder Cerastoderma edule (Mollusca, Bivalvia) in the Marennes-Oleron Bay. Hydrobiologia 440:317–29.CrossRefGoogle Scholar
  49. Swanberg IL. 1991. The influence of the filter-feeding bivalve Cerastoderma edule L. on microphytobenthos—a laboratory study. J Exp Mar Biol Ecol 151:93–111.CrossRefGoogle Scholar
  50. Thompson TL, Glenn EP. 1994. Plaster standards to measure water motion. Limnol Oceanogr 39:1768–79.CrossRefGoogle Scholar
  51. Thrush SF, Whitlatch RB, Pridmore RD, Hewitt JE, Cummings VJ, Wilkinson MR. 1996. Scale-dependent recolonization: the role of sediment stability in a dynamic sandflat habitat. Ecology 77:2472–87.CrossRefGoogle Scholar
  52. Thrush SF, Hewitt JE, Gibbs M, Lundquist C, Norkko A. 2006. Functional role of large organisms in intertidal communities: community effects and ecosystem function. Ecosystems 9:1029–40.CrossRefGoogle Scholar
  53. Tolhurst TJ, Black KS, Shayler SA, Mather S, Black I, Baker K, Paterson DM. 1999. Measuring the in situ erosion shear stress of intertidal sediments with the cohesive strength meter (CSM). Estuar Coast Shelf Sci 49:281–94.CrossRefGoogle Scholar
  54. Van De Koppel J, Herman PMJ, Thoolen P, Heip CHR. 2001. Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82:3449–61.CrossRefGoogle Scholar
  55. van der Heide T, van Nes EH, Geerling GW, Smolders AJP, Bouma TJ, van Katwijk MM. 2007. Positive feedbacks in seagrass ecosystems—implications for success in conservation and restoration. Ecosystems 10:1311–22.CrossRefGoogle Scholar
  56. van der Wal D, Wielemaker-van den Dool A, Herman PMJ. 2010. Spatial synchrony in intertidal benthic algal biomass in temperate coastal and estuarine ecosystems. Ecosystems 13:338–51.CrossRefGoogle Scholar
  57. van der Zee EM, van der Heide T, Donadi S, Eklof JS, Eriksson BK, Olff H, van der Veer HW, Piersma T. 2012. Spatially extended habitat modification by intertidal reef-building bivalves has implications for consumer–resource interactions. Ecosystems 15:664–73.CrossRefGoogle Scholar
  58. Volkenborn N, Hedtkamp SIC, van Beusekom JEE, Reise K. 2007. Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession. Estuar Coast Shelf Sci 74:331–43.CrossRefGoogle Scholar
  59. Weerman EJ, van de Koppel J, Eppinga MB, Montserrat F, Liu QX, Herman PMJ. 2010. Spatial self-organization on intertidal mudflats through biophysical stress divergence. Am Nat 176:E15–32.PubMedCrossRefGoogle Scholar
  60. Widdows J, Brinsley M. 2002. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone. J Sea Res 48:143–56.CrossRefGoogle Scholar
  61. Widdows J, Brinsley MD, Bowley N, Barrett C. 1998. A benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediments. Estuar Coast Shelf Sci 46:27–38.CrossRefGoogle Scholar
  62. Widdows J, Blauw A, Heip CHR, Herman PMJ, Lucas CH, Middelburg JJ, Schmidt S, Brinsley MD, Twisk F, Verbeek H. 2004. Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary, SW Netherlands. Mar Ecol Prog Ser 274:41–56.CrossRefGoogle Scholar
  63. Winterwerp JC, Van Kesteren WGM. 2004. Introduction to the physics of cohesive sediment in the marine environment. In: van Loon T, Ed. Developments in sedimentology. Amsterdam: Elsevier. Google Scholar
  64. Ysebaert T, Hart M, Herman PMJ. 2009. Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgol Mar Res 63:59–74.CrossRefGoogle Scholar
  65. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM, Eds. 2009. Mixed effects models and extensions in ecology with R. New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Serena Donadi
    • 1
    Email author
  • Joëlle Westra
    • 1
  • Ellen J. Weerman
    • 2
  • Tjisse van der Heide
    • 2
  • Els M. van der Zee
    • 3
    • 4
  • Johan van de Koppel
    • 2
    • 5
  • Han Olff
    • 2
  • Theunis Piersma
    • 3
    • 4
  • Henk W. van der Veer
    • 4
  • Britas Klemens Eriksson
    • 1
  1. 1.Department of Marine Benthic Ecology and Evolution, Centre for Ecological and Evolutionary Studies (CEES)University of GroningenGroningenThe Netherlands
  2. 2.Community and Conservation Ecology Group, Centre for Ecological and Evolutionary Studies (CEES)University of GroningenGroningenThe Netherlands
  3. 3.Animal Ecology Group, Centre for Ecological and Evolutionary Studies (CEES)University of GroningenGroningenThe Netherlands
  4. 4.Department of Marine EcologyRoyal Netherlands Institute for Sea Research (NIOZ)Den Burg, TexelThe Netherlands
  5. 5.Spatial Ecology DepartmentRoyal Netherlands Institute for Sea Research (NIOZ)YersekeThe Netherlands

Personalised recommendations