Advertisement

Ecosystems

, Volume 16, Issue 6, pp 1152–1164 | Cite as

Variable Production by Different Pelagic Energy Mobilizers in Boreal Lakes

  • Paula KankaalaEmail author
  • Jessica Lopez Bellido
  • Anne Ojala
  • Tiina Tulonen
  • Roger I. Jones
Article

Abstract

We studied production by three key pelagic energy mobilizer communities, phytoplankton (PP), heterotrophic bacteria (HB), and methanotrophic bacteria (MOB), in five boreal lakes of varying size and concentration of dissolved organic carbon (DOC). Production by PP was responsible for most (>55%) of the total pelagic energy mobilization in all five lakes. Production by HB and PP estimated for the whole water column during the ice-free period were positively correlated, but with the exception of the clearest and most eutrophic lake PP apparently could not support the total carbon demand of bacteria. However, the DOC concentration did not explain the variability of heterotrophic bacterial production (HBP) within or between the lakes. Thus, our results provide circumstantial evidence for the “priming effect” whereby labile organic matter from autochthonous production enhances decomposition of allochthonous DOC. However, HBP was only 10–23% of the total pelagic energy mobilization in the lakes, suggesting that only a minor fraction of allochthonous DOC became available for higher trophic levels. High MOB activity was detected in the water columns of the stratified lakes when the molar ratio of CH4:O2 varied between 0.5 and 12. In the small stratified lakes (area < 0.01 km2), MOB production contributed 13–52% of the total pelagic energy mobilization, being greatest during the autumn mixing period. Our results indicate that in small stratified lakes (area < 0.01 km2) bacteria, especially MOB, are potentially quantitatively important supplementary food resources for zooplankton. However, in larger lakes primary producers are the most important (>70%) potential food source for zooplankton.

Keywords

primary production bacterial production methane oxidation pelagic food web priming effect dissolved organic carbon 

Notes

Acknowledgments

This study was partly supported by Academy of Finland Grant 114604 to RIJ, Grant 139786 to PK, and Grant 201623 to AO. AO was also supported by Nordic Centre of Excellence for Studies of Ecosystem Carbon Exchange (NECC). We thank two anonymous reviewers for their suggestions to improve an earlier version of the manuscript.

References

  1. Amaral JA, Knowles R. 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiology Letters 126:215–30.CrossRefGoogle Scholar
  2. Arvola L, Ojala A, Barbosa F, Heaney SI. 1991. Migration behaviour of three cryptophytes in relation to environmental gradients: an experimental approach. British Phycological Journal 26:361–73.CrossRefGoogle Scholar
  3. Arvola L, Kankaala P, Tulonen T, Ojala A. 1996. Effects of phosphorus and allochthonous humic matter enrichment on the metabolic processes and community structure of plankton in a boreal lake. Canadian Journal of Fisheries and Aquatic Sciences 53:1646–62.CrossRefGoogle Scholar
  4. Bastviken D, Ejlertsson J, Sundh I, Tranvik L. 2003. Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84:969–81.CrossRefGoogle Scholar
  5. Bastviken D, Cole JJ, Pace ML, Van de Bogert MC. 2008. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research 113:G02024. doi: 10.1029/2007JG000608.CrossRefGoogle Scholar
  6. Berggren M, Laudon H, Jansson M. 2007. Landscape regulation of bacterial growth efficiency in boreal freshwaters. Global Biolgeochemical Cycles 21:GB4002. doi: 10.1029/2006GB002844.Google Scholar
  7. Berggren M, Laudon H, Jansson M. 2009. Aging of allochthonous organic carbon regulates bacterial production in unproductive boreal lakes. Limnology and Oceanography 54:133–1342.CrossRefGoogle Scholar
  8. Bergström A-K, Jansson M. 2000. Bacterioplankton production in humic lake Ortäsket in relation to input of bacterial cells and input of allochthonous organic carbon. Microbial Ecology 39:101–15.PubMedCrossRefGoogle Scholar
  9. Biddanda BA, Cotner JB. 2002. Love handles in aquatic ecosystems: the role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems 5:431–45.CrossRefGoogle Scholar
  10. Capone DG, Kiene RP. 1988. Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism. Limnology and Oceanography 33:725–49.CrossRefGoogle Scholar
  11. Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES. 2005. Ecosystems subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–50.CrossRefGoogle Scholar
  12. Cole JJ, Findlay S, Pace ML. 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43:1–10.CrossRefGoogle Scholar
  13. Dedysh SN, Panikov NS, Tiedje JM. 1998. Acidophilic methanotrophic communities from Sphagnum peat bogs. Applied and Environmental Microbiology 64:922–9.PubMedGoogle Scholar
  14. del Giorgio PA, Cole JJ. 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29:503–41.CrossRefGoogle Scholar
  15. del Giorgio PA, Peters RH. 1994. Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnology and Oceanography 39:772–87.CrossRefGoogle Scholar
  16. Fouilland E, Mostajir B. 2010. Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwaters, transitional, coastal and oceanic waters. FEMS Microbiology Ecology 73:419–29.PubMedCrossRefGoogle Scholar
  17. Guenet B, Danger M, Abbadie L, Lacroix G. 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–61.PubMedCrossRefGoogle Scholar
  18. Huotari J, Ojala A, Peltomaa E, Pumpanen J, Hari P, Vesala T. 2009. Temporal variations in surface water CO2 concentration in a boreal humic lake based on high-frequency measurements. Boreal Environment Research 14(suppl. A):48–60.Google Scholar
  19. Huotari J, Ojala A, Peltomaa E, Nordbo A, Launiainen S, Pumpanen J, Rasilo T, Hari P, Vesala T. 2011. Long-term direct CO2 flux measurements over a boreal lake: Five years of eddy covariance data. Geophysical Research Letters 38:L18401. doi: 10.1029/2011GL048753.CrossRefGoogle Scholar
  20. Jansson M, Bergström A-K, Blomquist P, Drakare S. 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81:3250–5.CrossRefGoogle Scholar
  21. Jansson M, Bergström A-K, Drakare S, Blomquist P. 2001. Nutrient limitation of bacterioplankton and phytoplankton in humic lakes in northern Sweden. Freshwater Biology 46:653–66.CrossRefGoogle Scholar
  22. Jansson M, Persson L, De Roos AM, Jones RI, Tranvik LJ. 2007. Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends in Ecology and Evolution 22:316–22.PubMedCrossRefGoogle Scholar
  23. Jones RI. 1992. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73–91.CrossRefGoogle Scholar
  24. Jones RI, Grey J. 2011. Biogenic methane in freshwater foodwebs. Freshwater Biology 56:213–29.CrossRefGoogle Scholar
  25. Jones RI, Grey J, Sleep D, Arvola L. 1999. Stable isotope analysis of zooplankton carbon nutrition in humic lakes. Oikos 86:97–104.CrossRefGoogle Scholar
  26. Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ. 2009. Methane dynamics in different boreal lake types. Biogeosciences 6:209–23.CrossRefGoogle Scholar
  27. Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A. 2006a. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnology and Oceanography 51:1195–204.CrossRefGoogle Scholar
  28. Kankaala P, Taipale S, Grey J, Sonninen E, Arvola L, Jones RI. 2006b. Experimental δ13C evidence for a contribution of methane to pelagic food webs in lakes. Limnology and Oceanography 51:2821–7.CrossRefGoogle Scholar
  29. Kankaala P, Taipale S, Nykänen H, Jones RI. 2007. Oxidation, efflux and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. Journal of Geophysical Research 112:G02003. doi: 10.1029/2006JG000336.CrossRefGoogle Scholar
  30. Kankaala P, Taipale S, Li L, Jones RI. 2010. Diets of crustacean zooplankton, inferred from stable carbon and nitrogen isotope analyses, in lakes with varying allochthonous dissolved organic carbon content. Aquatic Ecology 44:781–95.CrossRefGoogle Scholar
  31. Karlsson J, Berggren M, Ask J, Byström P, Jonsson A, Laudon H, Jansson M. 2012. Terrestrial organic matter of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnology and Oceanography 57:1042–8.CrossRefGoogle Scholar
  32. Keskitalo J, Salonen K. 1994. Manual for integrated monitoring, subprogramme hydrobiology of lakes. Water and Environment Administration B 16:1–41.Google Scholar
  33. Kirchman DL. 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecology 28:255–71.CrossRefGoogle Scholar
  34. Kirchman DL, K’Nees E, Hodson R. 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic ecosystems. Applied and Environmental Microbiology 49:599–607.PubMedGoogle Scholar
  35. Kortelainen P. 1993. Contents of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Canadian Journal of Fisheries and Aquatic Sciences 50:1477–83.CrossRefGoogle Scholar
  36. Krizberg ES, Cole JJ, Pace MM, Graneli W. 2005. Does autochhonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs. Aquatic Microbial Ecology 38:103–11.CrossRefGoogle Scholar
  37. Kroer N. 1993. Bacterial growth efficiency on natural dissolved organic carbon. Limnology and Oceanography 38:1282–90.CrossRefGoogle Scholar
  38. Kuuppo-Leinikki P, Salonen K. 1992. Bacterioplankton in a small polyhumic lake with an anoxic hypolimnion. Hydrobiologia 229:159–68.CrossRefGoogle Scholar
  39. Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry 32:1485–98.CrossRefGoogle Scholar
  40. Larsen S, Andersen T, Hessen DO. 2011. The pCO2 in boreal lakes: Organic carbon as a universal predictor? Global Biogeochemical Cycles 25:GB2012. doi: 10.1029/2010GB003864.Google Scholar
  41. Lennon JT, Cottingham KL. 2008. Microbial productivity in variable resource environments. Ecology 89:1001–14.PubMedCrossRefGoogle Scholar
  42. Lennon JT, Pfaff LE. 2005. Source and supply of terrestrial organic matter affects aquatic microbial metabolism. Aquatic Microbial Ecology 39:107–19.CrossRefGoogle Scholar
  43. Lizon F, Lagadeuc Y. 1998. Comparisons of primary production values estimated from different incubation times in a coastal sea. Journal of Plankton Research 20:371–81.CrossRefGoogle Scholar
  44. Maanoja S. 2008. Bakteerituotantomittauksissa käytettävän hiilen muunnoskertoimen määritys kahdelle humusjärvelle. (Determination of carbon conversion factor for measuring bacterial production in two humic lakes). Thesis (in Finnish with English summary), Pirkanmaa University of Applied Sciences, Degree Programme in Laboratory Sciences.Google Scholar
  45. Martin-Creuzburg D, Beck B, Freese HM. 2011. Food quality of heterotrophic bacteria for Daphnia magna: evidence for a limitation by sterols. FEMS Microbiology Ecology 76:592–601.PubMedCrossRefGoogle Scholar
  46. Middelboe M, Søndergaard M. 1993. Bacterioplankton growth yield: seasonal variations and coupling to substrate lability and β-glucosidase activity. Applied and Environmental Microbiology 59:3916–21.PubMedGoogle Scholar
  47. Miller LG, Sasson C, Oremland RS. 1998. Difluoromethane, a new and improved inhibitor of methanotrophy. Applied and Environmental Microbiology 64:4357–62.PubMedGoogle Scholar
  48. Ojala A, Kankaala P, Kairesalo T, Salonen K. 1995. Growth of Daphnia longispina L. in a polyhumic lake under various availabilities of algal, bacterial and detrital food. Hydrobiologia 315:119–34.CrossRefGoogle Scholar
  49. Ojala A, Heaney SI, Arvola L, Barbosa F. 1996. Growth of migrating and non-migrating cryptophytes in thermally and chemically stratified experimental column. Freshwater Biology 35:599–608.CrossRefGoogle Scholar
  50. Ojala A, López Bellido J, Tulonen T, Kankaala P, Huotari J. 2011. Carbon gas fluxes from a brown-water and a clear-water lake in the boreal zone during a summer with extreme rain events. Limnology and Oceanography 56:61–76.CrossRefGoogle Scholar
  51. Pérez MT, Sommaruga R. 2006. Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnology and Oceanography 51:2527–37.CrossRefGoogle Scholar
  52. Peura S, Eiler A, Bertilsson S, Nykänen H, Tiirola M, Jones RI. 2012. Distinct and diverse anaerobic bacterial communities in boreal lakes dominated by candidate division OD1. The ISME Journal 6:1640–52.PubMedCrossRefGoogle Scholar
  53. Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow LA, Kroiss R, Wu CH, Gaiser E. 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling & Software 26:1325–36. doi: 10.1016/j.envsoft.2011.05.006.CrossRefGoogle Scholar
  54. Read JS, Hamilton DP, Desai AR, Rose KC, MacIntyre S, Lenters JD, Smyth RL, Hanson PC, Cole JJ, Staehr PA, Rusak JA, Pierson DC, Brookes JD, Laas A, Wu CH. 2012. Lake-size dependency of wind shear and convection as controls of gas exchange. Geophysical Research Letters 39:L09405. doi: 10.1029/2012GL051886.CrossRefGoogle Scholar
  55. Rudd JWM, Hamilton RD. 1978. Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnology and Oceanography 23:337–48.CrossRefGoogle Scholar
  56. Salonen K, Kononen K, Arvola L. 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101:65–70.CrossRefGoogle Scholar
  57. Salonen K, Arvola L, Rask M. 1984a. Autumnal and vernal circulation of small forest lakes in southern Finland. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 22:103–7.Google Scholar
  58. Salonen K, Jones RI, Arvola L. 1984b. Hypolimnetic phosphorus retrieval by diel vertical migrations of lake phytoplankton. Freshwater Biology 14:431–8.CrossRefGoogle Scholar
  59. Simon M, Azam F. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51:201–13.CrossRefGoogle Scholar
  60. Taipale S, Kankaala P, Tiirola M, Jones RI. 2008. Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology 89:463–74.PubMedCrossRefGoogle Scholar
  61. Taipale S, Jones RI, Tiirola M. 2009. Vertical diversity of bacteria in an oxygen-stratified humic lake, evaluated using DNA and phospholipid analyses. Aquatic Microbial Ecology 55:1–16.CrossRefGoogle Scholar
  62. Taipale SJ, Brett MT, Pulkkinen K, Kainz MJ. 2012. The influence of bacteria-dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition. FEMS Microbiology Ecology 82:50–62.PubMedCrossRefGoogle Scholar
  63. Templeton AS, Chu K-H, Alvarez-Cohen L, Conrad ME. 2006. Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochimica et Cosmochimica Acta 70:1739–52.CrossRefGoogle Scholar
  64. Tranvik LJ. 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbial Ecology 16:311–22.CrossRefGoogle Scholar
  65. Tulonen T. 1993. Bacterial production in a mesohumic lake estimated from [14C]leucine incorporation rate. Microbial Ecology 26:201–17.CrossRefGoogle Scholar
  66. Van Gemerden H, Mas J. 1995. Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE, Eds. Anoxygenic photosynthetic bacteria. Dordrecht: Kluwer. Google Scholar
  67. Weisse T. 2004. Pelagic microbes—protozoa and the microbial food web. In: O’Sullivan PE, Reynolds CS, Eds. The lakes handbook. Volume 1. Limnology and limnetic ecology. Malden, MA: Blackwell Science Ltd. p 417–60.Google Scholar
  68. Wetzel RG, Likens GE. 1991. Limnological analyses. New York: Springer. p 391.CrossRefGoogle Scholar
  69. Wilkinson GM, Pace ML, Cole JJ. 2013. Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochemical Cycles 27:1–9.CrossRefGoogle Scholar
  70. Xenopoulos MA, Lodge DM, Frentress J, Kreps TA, Bridgham SD, Grossman E, Jackson CJ. 2003. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnology and Oceanography 48:2321–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Paula Kankaala
    • 1
    Email author
  • Jessica Lopez Bellido
    • 2
  • Anne Ojala
    • 2
  • Tiina Tulonen
    • 3
  • Roger I. Jones
    • 4
  1. 1.Department of BiologyUniversity of Eastern FinlandJoensuuFinland
  2. 2.Department of Environmental SciencesUniversity of HelsinkiLahtiFinland
  3. 3.Lammi Biological StationUniversity of HelsinkiLammiFinland
  4. 4.Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland

Personalised recommendations