Ecosystems

, Volume 16, Issue 5, pp 810–822 | Cite as

Stimulation of Different Functional Groups of Bacteria by Various Plant Residues as a Driver of Soil Priming Effect

  • Noémie Pascault
  • Lionel Ranjard
  • Aurore Kaisermann
  • Dipankar Bachar
  • Richard Christen
  • Sébastien Terrat
  • Olivier Mathieu
  • Jean Lévêque
  • Christophe Mougel
  • Catherine Henault
  • Philippe Lemanceau
  • Michel Péan
  • Séverine Boiry
  • Sébastien Fontaine
  • Pierre-Alain Maron
Article

Abstract

The turnover of organic matter in soil depends on the activity of microbial decomposers. However, little is known about how modifications of the diversity of soil microbial communities induced by fresh organic matter (FOM) inputs can regulate carbon cycling. Here, we investigated the decomposition of two 13C labeled crop residues (wheat and alfalfa) and the dynamics of the genetic structure and taxonomic composition of the soil bacterial communities decomposing 13C labeled FOM and native unlabeled soil organic matter (SOM), respectively. It was achieved by combining the stable isotope probing method with molecular tools (DNA genotyping and pyrosequencing of 16S rDNA). Although a priming effect (PE) was always induced by residue addition, its intensity increased with the degradability of the plant residue. The input of both wheat and alfalfa residues induced a rapid dynamics of FOM-degrading communities, corresponding to the stimulation of bacterial phyla which have been previously described as copiotrophic organisms. However, the dynamics and the identity of the bacterial groups stimulated depended on the residue added, with Firmicutes dominating in the wheat treatment and Proteobacteria dominating in the alfalfa treatment after 3 days of incubation. In both treatments, SOM-degrading communities were dominated by Acidobacteria, Verrucomicrobia, and Gemmatimonadetes phyla which have been previously described as oligotrophic organisms. An early stimulation of SOM-degrading populations mainly belonging to Firmicutes and Bacteroidetes groups was observed in the alfalfa treatment whereas no change occurred in the wheat treatment. Our findings support the hypothesis that the succession of bacterial taxonomic groups occurring in SOM- and FOM-degrading communities during the degradation process may be an important driver of the PE, and consequently of carbon dynamics in soil.

Keywords

bacterial diversity soil stable isotope probing pyrosequencing carbon cycle soil organic matter 

Supplementary material

10021_2013_9650_MOESM1_ESM.tif (1.5 mb)
Figure 1S. Example of B-ARISA profile obtained from light and heavy DNA fractions of wheat amended microcosms after 3, 7, 14, 28, 60 and 120 days of incubation. Molecular mass (in base pairs) is indicated on the left (TIF 1500 kb)
10021_2013_9650_MOESM2_ESM.tif (270 kb)
Figure 2S. Principal component analysis (PC1xPC2) plots generated from B-ARISA profiles obtained from DNA extracted from the heavy fractions of wheat- and alfalfa-amended microcosms. Grey labels represent the alfalfa treatment; black labels represent the wheat treatment. Numbers represent days of incubation. Lines correspond to the three replicate samples performed for each sampling point (TIF 270 kb)
10021_2013_9650_MOESM3_ESM.tif (862 kb)
Figure 3S. Rarefaction curves determined by pyrosequencing of the 16S rDNA gene obtained for the heavy and light DNA fractions from wheat (A) and alfalfa (B) amended microcosms after 3, 14, and 60 days of incubation. Rarefaction curves were determined using clustering at K = 3 differences (TIF 863 kb)

References

  1. Acosta-Martinez V, Dowd S, Sun Y, Allen V. 2008. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–70.CrossRefGoogle Scholar
  2. Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M. 2006. Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of microbial community. Microb Ecol 52:127–35.PubMedCrossRefGoogle Scholar
  3. Barns SM, Takala SL, Kuske CR. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–7.PubMedGoogle Scholar
  4. Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T. 2011. Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13:340–9.PubMedCrossRefGoogle Scholar
  5. Beijerinck MW. 1913. De infusies en de ontdekking der backterien. In: Jaarboek van de Knoniklijke Akademie van Wetenschappen. Amsterdam: Muller.Google Scholar
  6. Bell JM, Smith JL, Bailey VL, Bolton H. 2003. Priming effect and C storage in semi-arid no-till spring crop rotations. Biol Fertil Soils 37:237–44.Google Scholar
  7. Bernard L, Mougel C, Maron PA, Nowak V, Lévêque J, Hénault C, Haichar FEZ, Berge O, Marol C, Balesdent J, Gibiat F, Lemanceau P, Ranjard L. 2007. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ Microbiol 9:752–64.PubMedCrossRefGoogle Scholar
  8. Bernard L, Maron PA, Mougel C, Nowak V, Lévêque J, Marol C, Balesdent J, Gibiat F, Ranjard L. 2009. Contamination of soil by copper affects the dynamics, diversity and activity of soil bacterial communities involved in wheat decomposition and carbon storage. Appl Environ Microb 75:7565–9.CrossRefGoogle Scholar
  9. Cayuela ML, Sinicco T, Mondini C. 2009. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil. Appl Soil Ecol 41:118–27.CrossRefGoogle Scholar
  10. Chen Y, Murrell JC. 2010. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 18:157–63.PubMedCrossRefGoogle Scholar
  11. Chessel D, Dufour AB, Thioulouse J. 2004. The ade4 package—I: one-table methods. R News 4:5–10.Google Scholar
  12. Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR. 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–40.CrossRefGoogle Scholar
  13. Eilers KG, Lauber CL, Knight R, Fierer N. 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42:896–903.CrossRefGoogle Scholar
  14. Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology 88:1354–64.PubMedCrossRefGoogle Scholar
  15. Fodor AA, Desantis TZ, Wylie KM, Badger JH, Ye Y, Hepburn T, Hu P, Sodergren E, Liolios K, Huot-Creasy H, Birren BW, Earl AM. 2012. The “most wanted” taxa from the human microbiome for whole genome sequencing. PLoS ONE 7:e41294.PubMedCrossRefGoogle Scholar
  16. Fontaine S, Barot S. 2005. Size and functional diversity of microbe populations control plant persistence and carbon accumulation. Ecol Lett 8:1075–87.CrossRefGoogle Scholar
  17. Fontaine S, Mariotti A, Abbadie L. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–43.CrossRefGoogle Scholar
  18. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nat Lett 450:277–80.CrossRefGoogle Scholar
  19. Gignoux J, House J, Hall D, Masse D, Nacro HB, Abbadie L. 2001. Design and test of a generic cohort model of soil organic matter decomposition: the SOMKO model. Glob Ecol Biogeogr 10:639–60.CrossRefGoogle Scholar
  20. Haichar FZ, Achouak W, Christen R, Heulin T, Marol C, Marais MF, Mougel C, Ranjard L, Balesdent J, Berge O. 2007. Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol 9:625–34.PubMedCrossRefGoogle Scholar
  21. Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W. 2008. Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–30.PubMedCrossRefGoogle Scholar
  22. Henriksen TM, Breland TA. 1999. Evaluation of criteria for describing crop residue degradability in a model of carbon and nitrogen turnover in soil. Soil Biol Biochem 31:1135–49.CrossRefGoogle Scholar
  23. Ingwersen J, Poll C, Streck T, Kandeler E. 2008. Micro-scale modeling of carbon turn-over driven by microbial succession at a biogeochemical interface. Soil Biol Biochem 40:872–86.CrossRefGoogle Scholar
  24. Jenkins SN, Rushton SP, Lanyon CV, Whiteley AS, Waite IS, Brookes PC, Kemmitt S, Evershed RP, O’Donnell AG. 2010. Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol Biochem 42:1624–31.CrossRefGoogle Scholar
  25. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–53.PubMedCrossRefGoogle Scholar
  26. Joshi SR, Sharma GD, Mishra RR. 1993. Microbial enzyme activities related to litter decomposition near a highway in a sub-tropical forest of north east India. Soil Biol Biochem 25:1763–70.CrossRefGoogle Scholar
  27. Kuzyakov Y. 2010. Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–71.CrossRefGoogle Scholar
  28. Lawrence CR, Neff JC, Schimel JP. 2009. Does adding microbial mechanisms of decomposition improve soil organic matter models? A comparison of four models using data from a pulsed rewetting experiment. Soil Biol Biochem 41:1923–34.CrossRefGoogle Scholar
  29. Le Guillou C, Angers DA, Maron PA, Leterme P, Menasseri-Aubry S. 2012. Linking microbial community to soil water-stable aggregation during crop residue decomposition. Soil Biol Biochem 50:126–33.CrossRefGoogle Scholar
  30. Malosso E, English L, Hopkins DW, O’Donnell AG. 2004. Use of C-13-labelled plant materials and ergosterol, PLFA and NLFA analyses to investigate organic matter decomposition in antarctic soil. Soil Biol Biochem 36:165–75.CrossRefGoogle Scholar
  31. McGill WB. 1996. Review and classification of ten soil organic matter (SOM) models. In: Powlson DS, Smith P, Smith JU, Eds. Evaluation of soil organic matter models. Berlin: Springer. p 111–32.CrossRefGoogle Scholar
  32. Neill C, Gignoux J. 2006. Soil organic matter decomposition driven by microbial growth: a simple model for a complex network of interactions. Soil Biol Biochem 38:803–11.CrossRefGoogle Scholar
  33. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK. 2007. Microbial community succession in an unvegetaled recently deglaciated soil. Microb Ecol 53:110–22.PubMedCrossRefGoogle Scholar
  34. Nicolardot B, Recous S, Mary B. 2001. Simulation of C and N mineralization during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues. Plant Soil 228:83–103.CrossRefGoogle Scholar
  35. Nicolardot B, Bouziri L, Bastian F, Ranjard L. 2007. A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biol Biochem 39:1631–44.CrossRefGoogle Scholar
  36. Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ. 2009. Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Appl Soil Ecol 42:183–90.CrossRefGoogle Scholar
  37. Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, Snape JR, Tsai CS, Park W, Jeon C, Madsen EL. 2003. Respiration of 13C-labeled substrates added to soil in the field and subsequent 16 rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microb 69:1614–22.CrossRefGoogle Scholar
  38. Pascault N, Cécillon L, Mathieu O, Hénault C, Sarr A, Lévêque J, Farcy P, Ranjard L, Maron PA. 2010. In situ dynamics of microbial communities during decomposition of wheat, rape and alfalfa residues. Microb Ecol 60:816–28.PubMedCrossRefGoogle Scholar
  39. Pawlowski J, Christen R, Lecroq B, Bachar D, Shahbazkia HR, Amaral-Zettler L, Guillou L. 2011. Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS ONE 6:e18169.PubMedCrossRefGoogle Scholar
  40. Philippot L, Bru D, Saby NPA, Cuhel J, Arrouays D, Simek M, Hallin S. 2009. Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16S rRNA bacterial tree. Environ Microbiol 11:3096–104.PubMedCrossRefGoogle Scholar
  41. Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S. 2010. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–9.PubMedCrossRefGoogle Scholar
  42. Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team. 2012. Nlme: linear and nonlinear mixed effects models. R package version 2.11.Google Scholar
  43. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies JR, Glöckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–96.PubMedCrossRefGoogle Scholar
  44. Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT. 2009. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–41.PubMedCrossRefGoogle Scholar
  45. Radajewski S, Ineson P, Parekh NR, Murell JC. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403:646–9.PubMedCrossRefGoogle Scholar
  46. Ranjard L, Echairi A, Nowak V, Lejon DPH, Nouaim R, Chaussod R. 2006. Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils. FEMS Microbiol Ecol 58:303–15.PubMedCrossRefGoogle Scholar
  47. Rasmussen C. 2007. Soil mineralogy affects conifer forest soil carbon source utilization and microbial priming. Soil Biol Biochem 71:1141–50.Google Scholar
  48. R Development Core Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.
  49. Reeder J, Knight R. 2009. The ‘rare biosphere’: a reality check. Nat Methods 6:636–7.PubMedCrossRefGoogle Scholar
  50. Schimel JP, Weintraub MN. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–63.CrossRefGoogle Scholar
  51. Schlesinger WH, Andrews JA. 2000. Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20.CrossRefGoogle Scholar
  52. Shen J, Bartha R. 1996. Priming effect of substrate addition in soil-based biodegradation tests. Appl Environ Microb 62:1428–30.Google Scholar
  53. Stearns JC, Lynch MD, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG, Croitoru K, Moreno-Hagelsieb G, Neufeld JD. 2011. Bacterial biogeography of the human digestive tract. Sci Rep 1:170.PubMedCrossRefGoogle Scholar
  54. Stecher B, Chaffron S, Käppeli R, Hapfelmeier S, Freedrich S, Weber TC, Kirundi J, Suar M, McCoy KD, von Mering C, Macpherson AJ, Hardt WD. 2010. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6:e1000711.PubMedCrossRefGoogle Scholar
  55. Stoeck T, Behnke A, Christen R, Amaral-Zettler L, Rodriguez-Mora MJ, Chistoserdov A, Orsi W, Edgcomb VP. 2009. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7:72.PubMedCrossRefGoogle Scholar
  56. Thioulouse J, Chessel D, Dolédec S, Olivier JM. 1997. ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83.CrossRefGoogle Scholar
  57. Waldrop MP, Firestone MK. 2004. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia 138:275–84.PubMedCrossRefGoogle Scholar
  58. Will C, Thürmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, Gutknecht J, Wubet T, Buscot F, Daniel R. 2010. Horizon-specific community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rDNA genes. Appl Environ Microb 76:6751–9.CrossRefGoogle Scholar
  59. Xu JM, Tang C, Chen ZL. 2006. Chemical composition controls residue decomposition in soils differing in initial pH. Soil Biol Biochem 38:544–52.CrossRefGoogle Scholar
  60. Youssef NH, Elshahed MS. 2009. Diversity ranking among bacterial lineage in soil. ISME J 3:305–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Noémie Pascault
    • 1
  • Lionel Ranjard
    • 1
    • 2
  • Aurore Kaisermann
    • 1
  • Dipankar Bachar
    • 3
  • Richard Christen
    • 3
  • Sébastien Terrat
    • 1
    • 2
  • Olivier Mathieu
    • 4
  • Jean Lévêque
    • 4
  • Christophe Mougel
    • 1
  • Catherine Henault
    • 1
  • Philippe Lemanceau
    • 1
  • Michel Péan
    • 5
  • Séverine Boiry
    • 5
  • Sébastien Fontaine
    • 6
  • Pierre-Alain Maron
    • 1
    • 2
  1. 1.UMR Agroecology, INRA/Université de Bourgogne, CMSEDijon CedexFrance
  2. 2.INRA, Plateforme GenoSol, UMR1347 AgroécologieDijonFrance
  3. 3.Laboratoire de Biologie VirtuelleCentre de Biochimie, Parc Valose, Université de Nice et CNRS UMR 6543NiceFrance
  4. 4.UMR 5561 Biogéosciences, CNRS/Université de BourgogneUniversité de BourgogneDijonFrance
  5. 5.CEA, DSV, IBEB, Group Rech Appl PhytotecholUMR 6191 CEA/CNRS/Université Aix-MarseilleSaint-Paul-lez-DuranceFrance
  6. 6.UR874 Unité de Recherche sur l’Ecosystème PrairialINRAClermont-FerrandFrance

Personalised recommendations