, Volume 16, Issue 5, pp 749–764 | Cite as

Drought Influences the Accuracy of Simulated Ecosystem Fluxes: A Model-Data Meta-analysis for Mediterranean Oak Woodlands

  • Rodrigo VargasEmail author
  • Oliver Sonnentag
  • Gab Abramowitz
  • Arnaud Carrara
  • Jing Ming Chen
  • Philippe Ciais
  • Alexandra Correia
  • Trevor F. Keenan
  • Hideki Kobayashi
  • Jean-Marc Ourcival
  • Dario Papale
  • David Pearson
  • Joao S. Pereira
  • Shilong Piao
  • Serge Rambal
  • Dennis D. Baldocchi


Water availability is the dominant control of global terrestrial primary productivity with concurrent effects on evapotranspiration and ecosystem respiration, especially in water-limited ecosystems. Process-oriented ecosystem models are critical tools for understanding land–atmosphere exchanges and for up-scaling this information to regional and global scales. Thus, it is important to understand how ecosystem models simulate ecosystem fluxes under changing weather conditions. Here, we applied both time-series analysis and meta-analysis techniques to study how five ecosystem process-oriented models-simulated gross primary production (GPP), ecosystem respiration (Reco), and evapotranspiration (ET). Ecosystem fluxes were simulated for 3 years at a daily time step from four evergreen and three deciduous Mediterranean oak woodlands (21 site-year measurements; 105 site-year-simulations). Mediterranean ecosystems are important test-beds for studying the interannual dynamics of soil moisture on ecosystem mass and energy exchange as they experience cool, wet winters with hot, dry summers and are typically subject to drought. Results show data-model disagreements at multiple temporal scales for GPP, Reco, and ET at both plant functional types. Overall there was a systematic underestimation of the temporal variation of Reco at both plant functional types at temporal scales between weeks and months, and an overestimation at the yearly scale. Modeled Reco was systematically overestimated during drought for all sites, but daily GPP was systematically underestimated only for deciduous sites during drought. In contrast, daily estimates of ET showed good data-model agreement even during drought conditions. This meta-analysis brings attention to the importance of drought conditions for modeling purposes in representing forest dynamics in water-limited ecosystems.


ecosystem models eddy covariance FLUXNET forest survival model evaluation water stress 



This study used data produced in the La Thuile 2007 FLUXNET workshop. We thank Deb Agarwal, Dario Papale, Markus Reichstein, and Catharine van Ingen for their study in the organization of the La Thuile data set. We acknowledge financial support for database development and maintenance from CarboeuropeIP, FAO-GTOS-TCO, iLEAPS, the Max Planck Institute for Biogeochemistry, the National Science Foundation, the University of Tuscia, the US Department of Energy, the Berkeley Water Center, the Lawrence Berkeley National Laboratory, Microsoft Research eScience, and Oak Ridge National Laboratory, University of Virginia. J.P. and A.C. thanks João Banza for collecting flux tower measurements and Teresa do Paço for reviewing and correcting evapotranspiration fluxes in the Évora experimental site. R.V. acknowledges support from Ciencia Básica CONACyT (152671). D. Pearson was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). D. Papale acknowledges the support from GHG-Europe FP7 European project. This manuscript was improved by comments of two anonymous reviewers and Dr. Thomas Hickler.

Supplementary material

10021_2013_9648_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4384 kb)


  1. Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T. 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–75.CrossRefGoogle Scholar
  2. Baldocchi D, Tang JW, Xu LK. 2006. How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. J Geophys Res-Biogeosci 111:G02008. doi: 10.1029/2005JG000063.CrossRefGoogle Scholar
  3. Baldocchi D, Xu L. 2007. What limits evaporation from Mediterranean oak woodlands—the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? AdWR 30:2113–22.Google Scholar
  4. Baldocchi DD, Ma SY, Rambal S, Misson L, Ourcival JM, Limousin JM, Pereira J, Papale D. 2010. On the differential advantages of ever greenness and deciduousness in mediterranean oak woodlands: a flux perspective. Ecol Appl 20:1583–97.PubMedCrossRefGoogle Scholar
  5. Ball JT, Berry JA. 1982. The Ci/Cs ratio: a basis for predicting stomatal control of photosynthesis. Carnegie Inst Wash Year Book 81:88–92.Google Scholar
  6. Ball JT, Berry JA, Woodrow IE. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Binggins IJ, Ed. Progress in photosynthesis research, Vol. IV. Dordrecht: Martinus Nijhoff. p 221–4.CrossRefGoogle Scholar
  7. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–8.PubMedCrossRefGoogle Scholar
  8. Bernier PY, Breda N, Granier A, Raulier F, Mathieu F. 2002. Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurements. For Ecol Manage 163:185–96.CrossRefGoogle Scholar
  9. Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Menard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth E, Boucher O, Cox PM, Grimmond CSB, Harding RJ. 2011. The joint UK land environment simulator (JULES), model description—part 1: energy and water fluxes. Geosci Model Dev 4:677–99.CrossRefGoogle Scholar
  10. Brandt LA, Bohnet C, King JY. 2009. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J Geophys Res Biogeosci 114:G02004. doi: 10.1029/2008JG000772.CrossRefGoogle Scholar
  11. Carbone MS, Still CJ, Ambrose AR, Dawson TE, Williams AP, Boot CM, Schaeffer SM, Schimel JP. 2011. Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia 167:265–78.PubMedCrossRefGoogle Scholar
  12. Casals P, Gimeno C, Carrara A, Lopez-Sangil L, Sanz M. 2009. Soil CO2 efflux and extractable organic carbon fractions under simulated precipitation events in a Mediterranean Dehesa. Soil Biol Biochem 41:1915–22.CrossRefGoogle Scholar
  13. Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher O, Harding RJ, Huntingford C, Cox PM. 2011. The joint UK land environment simulator (JULES), model description—part 2: carbon fluxes and vegetation dynamics. Geosci Model Dev 4:701–22.CrossRefGoogle Scholar
  14. Collatz GJ, Ball JT, Grivet C, Berry JA. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agr Forest Meteorol 54:107–36.CrossRefGoogle Scholar
  15. Dai AG, Trenberth KE, Qian TT. 2004. A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–30.CrossRefGoogle Scholar
  16. David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS. 2007. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803.PubMedCrossRefGoogle Scholar
  17. Dietze MC, Vargas R, Richardson AD, Stoy PC, Barr AG, Anderson RS, Arain MA, Baker IT, Black TA, Chen JM, Ciais P, Flanagan LB, Gough CM, Grant RF, Hollinger D, Izaurralde RC, Kucharik CJ, Lafleur P, Liu SG, Lokupitiya E, Luo YQ, Munger JW, Peng CH, Poulter B, Price DT, Ricciuto DM, Riley WJ, Sahoo AK, Schaefer K, Suyker AE, Tian HQ, Tonitto C, Verbeeck H, Verma SB, Wang WF, Weng ES. 2011. Characterizing the performance of ecosystem models across time scales: a spectral analysis of the North American Carbon Program site-level synthesis. J Geophys Res-Biogeosci 116:G04029. doi: 10.1029/2011JG001661.CrossRefGoogle Scholar
  18. Ducoudré NI, Laval K, Perrier A. 1993. SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land atmosphere interface within the LMD atmospheric circulation model. J Clim 6:248–73.CrossRefGoogle Scholar
  19. Farquhar G, Von Caemmerer S, Berry J. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.CrossRefGoogle Scholar
  20. Friend AD, Schugart HH, Running SW. 1993. A physiology-based gap model of forest dynamics. Ecology 74:792–7.CrossRefGoogle Scholar
  21. Giorgi F. 2006. Climate change hot-spots. Geophys Res Lett 33:L08707. doi: 08710.01029/02006GL025734.CrossRefGoogle Scholar
  22. Giorgi F, Lionello P. 2008. Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104.CrossRefGoogle Scholar
  23. Gurevitch J, Curtis PS, Jones MH. 2001. Meta-analysis in ecology. Adv Ecol Res 32:199–247.CrossRefGoogle Scholar
  24. Hartmann H. 2011. Will a 385 million year-struggle for light become a struggle for water and for carbon?—How trees may cope with more frequent climate change-type drought events. Glob Chang Biol 17:642–55.CrossRefGoogle Scholar
  25. Hedges LV, Gurevitch J, Curtis PS. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–6.CrossRefGoogle Scholar
  26. Ichii K, Wang WL, Hashimoto H, Yang FH, Votava P, Michaelis AR, Nemani RR. 2009. Refinement of rooting depths using satellite-based evapotranspiration seasonality for ecosystem modeling in California. Agr For Meteorol 149:1907–18.CrossRefGoogle Scholar
  27. Joffre R, Rambal S, Damesin C. 2007. Functional attributes in mediterranean-type ecosystems. In: Pugnaire FI, Ed. Functional plant ecology. Boca Raton: CRC Press. p. 285–312.Google Scholar
  28. Ju WM, Chen JM, Black TA, Barr AG, Liu J, Chen BZ. 2006. Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest. Agr For Meteorol 140:136–51.CrossRefGoogle Scholar
  29. Jung M, Le Maire G, Zaehle S, Luyssaert S, Vetter M, Churkina G, Ciais P, Viovy N, Reichstein M. 2007. Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe. Biogeosciences 4:647–56.CrossRefGoogle Scholar
  30. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–4.PubMedCrossRefGoogle Scholar
  31. Keenan T, Garcia R, Friend AD, Zaehle S, Gracia C, Sabate S. 2009. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling. Biogeosciences 6:1423–44.CrossRefGoogle Scholar
  32. Keenan T, Sabate S, Gracia C. 2010a. The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods. Glob Chang Biol 16:1019–34.CrossRefGoogle Scholar
  33. Keenan T, Sabate S, Gracia C. 2010b. Soil water stress and coupled photosynthesis–conductance models: bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis. Agr For Meteorol 150:443–53.CrossRefGoogle Scholar
  34. Kharin VV, Zwiers FW, Zhang XB, Hegerl GC. 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–44.CrossRefGoogle Scholar
  35. Kobayashi H, Baldocchi DD, Ryu Y, Chen Q, Ma SY, Osuna JL, Ustin SL. 2012. Modeling energy and carbon fluxes in a heterogeneous oak woodland: a three-dimensional approach. Agr For Meteorol 152:83–100.CrossRefGoogle Scholar
  36. Kowalczyk EA, Wang YP, Law RM, Davies HL, McGregor JL, Abramowitz G. 2006. The CSIRO atmosphere biosphere land exchange (CABLE) model for use in climate models and as an offline model. CSIRO Marine and Atmospheric Research Paper 013, CSIRO, Australia. (
  37. Krinner G, Viovy N, de Noblet-Ducoudre N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC. 2005. A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Biogeochem Cycles 19:GB1015.CrossRefGoogle Scholar
  38. Lawrence DM, Thornton PE, Oleson KW, Bonan GB. 2007. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land–atmosphere interaction. J Hydrometeorol 8:862–80.CrossRefGoogle Scholar
  39. Leuning R, Kelliher FM, Depury DGG, Schulze ED. 1995. Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell Environ 18:1183–200.CrossRefGoogle Scholar
  40. Limousin JM, Misson L, Lavoir AV, Martin NK, Rambal S. 2010. Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity? Plant, Cell Environ 33:863–75.Google Scholar
  41. Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23.CrossRefGoogle Scholar
  42. Ma SY, Baldocchi DD, Xu LK, Hehn T. 2007. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agr For Meteorol 147:157–71.CrossRefGoogle Scholar
  43. Mahecha MD, Reichstein M, Jung M, Seneviratne SI, Zaehle S, Beer C, Braakhekke MC, Carvalhais N, Lange H, Le Maire G, Moors E. 2010. Comparing observations and process-based simulations of biosphere–atmosphere exchanges on multiple timescales. J Geophys Res Biogeosci 115:G02003.CrossRefGoogle Scholar
  44. Mariscal MJ, Martens SN, Ustin SL, Chen JQ, Weiss SB, Roberts DA. 2004. Light-transmission profiles in an old-growth forest canopy: simulations of photosynthetically active radiation by using spatially explicit radiative transfer models. Ecosystems 7:454–67.CrossRefGoogle Scholar
  45. Miller GR, Chen XY, Rubin Y, Ma SY, Baldocchi DD. 2010. Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Resour Res 46:W10503.CrossRefGoogle Scholar
  46. Misson L, Baldocchi DD, Black TA, Blanken PD, Brunet Y, Yuste JC, Dorsey JR, Falk M, Granier A, Irvine MR, Jarosz N, Lamaud E, Launiainen S, Law BE, Longdoz B, Loustau D, Mckay M, Paw KT, Vesala T, Vickers D, Wilson KB, Goldstein AH. 2007. Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agr For Meteorol 144:14–31.CrossRefGoogle Scholar
  47. Misson L, Rocheteau A, Rambal S, Ourcival JM, Limousin JM, Rodriguez R. 2010. Functional changes in the control of carbon fluxes after 3 years of increased drought in a Mediterranean evergreen forest? Glob Chang Biol 6:2461–75.Google Scholar
  48. Monteith JL. 1965. Evaporation and the environment. Symp Soc Explor Biol 19:205–34.Google Scholar
  49. Morales P, Sykes MT, Prentice IC, Smith P, Smith B, Bugmann H, Zierl B, Friedlingstein P, Viovy N, Sabate S, Sanchez A, Pla E, Gracia CA, Sitch S, Arneth A, Ogee J. 2005. Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Chang Biol 11:2211–33.CrossRefGoogle Scholar
  50. Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D. 2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–83.CrossRefGoogle Scholar
  51. Pereira JS, Mateus JA, Aires LM, Pita G, Pio C, David JS, Andrade V, Banza J, David TS, Paco TA, Rodrigues A. 2007. Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems—the effect of drought. Biogeosciences 4:791–802.CrossRefGoogle Scholar
  52. Rambal S, Joffre R, Ourcival JM, Cavender-Bares J, Rocheteau A. 2004. The growth respiration component in eddy CO2 flux from a Quercus ilex Mediterranean forest. Glob Chang Biol 10:1460–9.CrossRefGoogle Scholar
  53. Rambal S, Ourcival JM, Joffre R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A. 2003. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: scaling from leaf to canopy. Glob Chang Biol 9:1813–24.CrossRefGoogle Scholar
  54. Raupach MR, Rayner PJ, Barrett DJ, DeFries RS, Heimann M, Ojima DS, Quegan S, Schmullius CC. 2005. Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Glob Chang Biol 11:378–97.CrossRefGoogle Scholar
  55. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–39.CrossRefGoogle Scholar
  56. Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng YF, Grunzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D. 2003. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob Biogeochem Cycles 17(4):1104.CrossRefGoogle Scholar
  57. Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S, Valentini R. 2002a. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Funct Ecol 16:27–39.CrossRefGoogle Scholar
  58. Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R. 2002b. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob Chang Biol 8:999–1017.CrossRefGoogle Scholar
  59. Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen GS, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis HA, McCaughey H, Migliavacca M, Monson RK, Munger JW, Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, Tian HQ, Vargas R, Verbeeck H, Xiao JF, Xue YK. 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob Chang Biol 18:566–84.CrossRefGoogle Scholar
  60. Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, Munger JW, Moors E, Piao SL, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A. 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc B-Biol Sci 365:3227–46.CrossRefGoogle Scholar
  61. Rosenberg MS, Adams DC, Gurevitch J. 2000. MetaWin: statistical software for meta-analysis, version 2.0. Sunderland, MA: Sinauer Associates.Google Scholar
  62. Ruimy A, Dedieu G, Saugier B. 1996. TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Glob Biogeochem Cycles 10:269–85.CrossRefGoogle Scholar
  63. Running SW, Coughlan JC. 1988. A general model of forest ecosystem processes for regional applications. 1. Hydrologic balance, canopy gas-exchange and primary production processes. Ecol Model 42:125–54.CrossRefGoogle Scholar
  64. Ryu Y, Sonnentag O, Nilson T, Vargas R, Kobayashi H, Rebecca W, Baldocchi DD. 2010. How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agr For Meteorol 150:63–76.CrossRefGoogle Scholar
  65. Saxton KE, Rawls WJ, Romberger JS, Papendick RI. 1986. Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–6.CrossRefGoogle Scholar
  66. Schwalm CR, Williams CA, Schaefer K, Arneth A, Bonal D, Buchmann N, Chen J, Law BE, Lindroth A, Luyssaert S, Reichstein M, Richardson AD. 2010. Assimilation exceeds respiration sensitivity to drought: a FLUXNET synthesis. Glob Chang Biol 16:657–70.CrossRefGoogle Scholar
  67. Sonnentag O, Chen JM, Roulet NT, Ju W, Govind A. 2008. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: influence of mesoscale topography. J Geophys Res Biogeosci 113:G02005.CrossRefGoogle Scholar
  68. Soylu ME, Istanbulluoglu E, Lenters JD, Wang T. 2011. Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region. HESS 15:787–806.Google Scholar
  69. Taylor KE. 2001. Summarizing multiple aspects of model performance in a single diagram. J Geophys Res-Atmos 106:7183–92.CrossRefGoogle Scholar
  70. Tedeschi V, Rey A, Manca G, Valentini R, Jarvis PG, Borghetti M. 2006. Soil respiration in a Mediterranean oak forest at different developmental stages after coppicing. Glob Chang Biol 12:110–21.CrossRefGoogle Scholar
  71. Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT. 2011. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan desert grassland. Glob Chang Biol 17:1505–15.CrossRefGoogle Scholar
  72. Thompson SE, Harman CJ, Konings AG, Sivapalan M, Neal A, Troch PA. 2011. Comparative hydrology across AmeriFlux sites: the variable roles of climate, vegetation, and groundwater. Water Resour Res 47:W00J07. doi: 10.1029/2010WR009797.Google Scholar
  73. Tirone G, Dore S, Matteucci G, Greco S, Valentini R. 2003. Evergreen Mediterranean forests: carbon and water fluxes, balances, ecological and ecophysiological determinants. In: Valentini R, Ed. Fluxes of carbon, water and energy of European forests. Berlin: Springer. p 125–49.CrossRefGoogle Scholar
  74. Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78.CrossRefGoogle Scholar
  75. Trumbore S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411.CrossRefGoogle Scholar
  76. van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubková M, Friedl MA, Jung M, van den Hurk BJJM, de Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, van der Werf GR, Wang G. 2011. Drought and ecosystem carbon cycling. Agr For Meteorol 151:765–73.CrossRefGoogle Scholar
  77. Vargas R, Baldocchi DD, Allen MF, Bahn M, Black TA, Collins SL, Yuste JC, Hirano T, Jassal RS, Pumpanen J, Tang JW. 2010a. Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux. Ecol Appl 20:1569–82.PubMedCrossRefGoogle Scholar
  78. Vargas R, Baldocchi DD, Bahn M, Hanson PJ, Hosman KP, Kulmala L, Pumpanen J, Yang B. 2011. On the multi-temporal correlation between photosynthesis and soil CO2 efflux: reconciling lags and observations. New Phytol 191:1006–17.PubMedCrossRefGoogle Scholar
  79. Vargas R, Detto M, Baldocchi DD, Allen MF. 2010b. Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Glob Chang Biol 16:1589–605.CrossRefGoogle Scholar
  80. Vargas R, Trumbore SE, Allen MF. 2009. Evidence of old carbon used to grow new fine roots in a tropical forest. New Phytol 182:710–18.PubMedCrossRefGoogle Scholar
  81. Vogel CA, Baldocchi DD, Luhar AK, Rao S. 1995. A comparison of a hierarchy of models for determining energy balance components over vegetation canopies. J Appl Meteorol 34:2182–96.CrossRefGoogle Scholar
  82. Wang YP, Kowalczyk E, Leuning R, Abramowitz G, Raupach MR, Pak B, van Gorsel E, Luhar A. 2011. Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. J Geophys Res -Biogeosci 116:G01034.CrossRefGoogle Scholar
  83. White MA, Thornton PE, Running ST, Nemani RR. 2000. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4:1–85.CrossRefGoogle Scholar
  84. Xu LK, Baldocchi DD. 2003. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol 23:865–77.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rodrigo Vargas
    • 1
    Email author
  • Oliver Sonnentag
    • 2
  • Gab Abramowitz
    • 3
  • Arnaud Carrara
    • 4
  • Jing Ming Chen
    • 5
  • Philippe Ciais
    • 6
  • Alexandra Correia
    • 7
  • Trevor F. Keenan
    • 8
  • Hideki Kobayashi
    • 9
  • Jean-Marc Ourcival
    • 10
  • Dario Papale
    • 11
  • David Pearson
    • 12
  • Joao S. Pereira
    • 7
  • Shilong Piao
    • 13
  • Serge Rambal
    • 10
  • Dennis D. Baldocchi
    • 14
  1. 1.Department of Plant and Soil SciencesDelaware Environmental Institute, University of DelawareNewarkUSA
  2. 2.Département de GéographieUniversité de MontréalMontréalCanada
  3. 3.Climate Change Research Centre and Centre of Excellence for Climate System ScienceUniversity of New South WalesSydneyAustralia
  4. 4.Fundacion CEAMPaternaSpain
  5. 5.Department of Geography and Program in PlanningUniversity of TorontoTorontoCanada
  6. 6.Laboratoire des Sciences du Climat et de l’Environnement, LSCEGif sur YvetteFrance
  7. 7.Instituto Superior de Agronomia, Technical University of LisbonLisbonPortugal
  8. 8.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  9. 9.Japan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  10. 10.CEFE, Centre National de la Recherche ScientifiqueMontpellierFrance
  11. 11.DIBAF, University of TusciaViterboItaly
  12. 12.Met Office Hadley CentreDevonUK
  13. 13.Department of EcologyPeking UniversityBeijingChina
  14. 14.Department of Environmental SciencePolicy and Management, University of CaliforniaBerkeleyUSA

Personalised recommendations