Advertisement

Ecosystems

, Volume 16, Issue 3, pp 508–520 | Cite as

Altered Belowground Carbon Cycling Following Land-Use Change to Perennial Bioenergy Crops

  • Kristina J. Anderson-Teixeira
  • Michael D. Masters
  • Christopher K. Black
  • Marcelo Zeri
  • Mir Zaman Hussain
  • Carl J. Bernacchi
  • Evan H. DeLucia
Article

Abstract

Belowground carbon (C) dynamics of terrestrial ecosystems play an important role in the global C cycle and thereby in climate regulation. Globally, land-use change is a major driver of changes in belowground C storage. The emerging bioenergy industry is likely to drive widespread land-use changes, including the replacement of annually tilled croplands with perennial bioenergy crops, and thereby to impact the climate system through alteration of belowground C dynamics. Mechanistic understanding of how land-use changes impact belowground C storage requires elucidation of changes in belowground C flows; however, altered belowground C dynamics following land-use change have yet to be thoroughly quantified through field measurements. Here, we show that belowground C cycling pathways of establishing perennial bioenergy crops (0- to 3.5-year-old miscanthus, switchgrass, and a native prairie mix) were substantially altered relative to row crop agriculture (corn-soy rotation); specifically, there were substantial increases in belowground C allocation (>400%), belowground biomass (400–750%), root-associated respiration (up to 2,500%), moderate reductions in litter inputs (20–40%), and respiration in root-free soil (up to 50%). This more active root-associated C cycling of perennial vegetation provides a mechanism for observed net C sequestration by these perennial ecosystems, as well as commonly observed increases in soil C under perennial bioenergy crops throughout the world. The more active root-associated belowground C cycle of perennial vegetation implies a climate benefit of grassland maintenance or restoration, even if biomass is harvested annually for bioenergy production.

Keywords

carbon cycle root allocation soil respiration belowground carbon allocation bioenergy/biofuels soil organic carbon perennial grasses establishment phase 

Notes

Acknowledgments

Thank you to Tom Voigt and Emily Thomas for providing harvest yield data, to Tim Mies for help with Energy Farm logistics, to Nuria Gomez-Casanovas for contributions to analysis of gap-filling methods, and to Beth Yendrek for the illustration in Figure 7. The Energy Biosciences Institute funded this research.

References

  1. Al-Kaisi MM, Grote JB. 2007. Cropping systems effects on improving soil carbon stocks of exposed subsoil. Soil Sci Soc Am J 71:1381.CrossRefGoogle Scholar
  2. Anderson-Teixeira KJ, DeLucia EH. 2011. The greenhouse gas value of ecosystems. Glob Change Biol 17(1):425–38.CrossRefGoogle Scholar
  3. Anderson-Teixeira KJ, Davis SC, Masters MD, DeLucia EH. 2009. Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1(1):75–96.CrossRefGoogle Scholar
  4. Anderson-Teixeira KJ, Snyder PK, DeLucia EH. 2011. Do biofuels life cycle analyses accurately quantify the climate impacts of biofuels-related land use change? Ill Law Rev 2:589–622.Google Scholar
  5. Anderson-Teixeira KJ, Snyder PK, Twine TE, Cuadra SV, Costa MH, DeLucia EH. 2012. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat Climate Change 2(3):177–81.CrossRefGoogle Scholar
  6. Bernacchi CJ, Hollinger SE, Meyers TP. 2005. The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink. Glob Change Biol 11(11):1872.Google Scholar
  7. Blanco-Canqui H. 2010. Energy crops and their implications on soil and environment. Agron J 102:403.CrossRefGoogle Scholar
  8. Blanco-Canqui H, Lal R. 2007. Soil and crop response to harvesting corn residues for biofuel production. Geoderma 141(3–4):355–62.CrossRefGoogle Scholar
  9. Chapin F, Woodwell G, Randerson J, Rastetter E, Lovett G, Baldocchi D, Clark D, Harmon M, Schimel D, Valentini R et al. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9(7):1041–50.CrossRefGoogle Scholar
  10. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–95.CrossRefGoogle Scholar
  11. Davidson E, Ackerman I. 1993. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–93.CrossRefGoogle Scholar
  12. Davis S, Parton W, Dohleman F, Smith C, Grosso S, Kent A, DeLucia E. 2010. Comparative biogeochemical cycles of bioenergy crops reveal nitrogen-fixation and low greenhouse gas emissions in a miscanthus × giganteus agro-ecosystem. Ecosystems 13(1):144–56.CrossRefGoogle Scholar
  13. Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH. 2011. Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ. 110706144507005.Google Scholar
  14. DeLuca TH, Zabinski CA. 2011. Prairie ecosystems and the carbon problem. Front Ecol Environ 9:407–13.CrossRefGoogle Scholar
  15. Dohleman FG, Heaton EA, Arundale RA, Long SP. 2012. Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy [Epub ahead of print]. doi: 10.1111/j.1757-1707.2011.01153.x.
  16. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. 2008. Land clearing and the biofuel carbon debt. Science 319(5867):1235–8.PubMedCrossRefGoogle Scholar
  17. Fargione JE, Plevin RJ, Hill JD. 2010. The ecological impact of biofuels. Ann Rev Ecol Evol Syst 41(1):351–77.CrossRefGoogle Scholar
  18. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–80.PubMedCrossRefGoogle Scholar
  19. Fornara DA, Tilman D. 2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96(2):314–22.CrossRefGoogle Scholar
  20. Frank AB, Berdahl JD, Hanson JD, Liebig MA, Johnson HA. 2004. Biomass and carbon partitioning in switchgrass. Crop Sci 44(4):1391.CrossRefGoogle Scholar
  21. Fu S, Cheng W. 2002. Rhizosphere priming effects on the decomposition of soil organic matter in C4 and C3 grassland soils. Plant Soil 238(2):289–94.CrossRefGoogle Scholar
  22. Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP. 2011. Carbon debt of conservation reserve program (CRP) grasslands converted to bioenergy production. Proc Natl Acad Sci USA 108(33):13864–9.PubMedCrossRefGoogle Scholar
  23. Georgescu M, Lobell DB, Field CB. 2009. Potential impact of US biofuels on regional climate. Geophys Res Lett 36(21):L21806.CrossRefGoogle Scholar
  24. Georgescu M, Lobell DB, Field CB. 2011. Direct climate effects of perennial bioenergy crops in the United States. Proc Natl Acad Sci USA 108(11):4307–12.PubMedCrossRefGoogle Scholar
  25. Gomez-Casanovas N, Anderson-Teixeira KJ, Zeri M, Bernacchi C, DeLucia E. 2013. Gap filling strategies and error in estimating annual soil respiration. Glob Change BiolGoogle Scholar
  26. Grandy A, Robertson G. 2007. Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems 10(1):59–74.CrossRefGoogle Scholar
  27. Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8(4):345–60.CrossRefGoogle Scholar
  28. Heaton E, Dohleman FG, Long SP. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14(9):2000–14.CrossRefGoogle Scholar
  29. Jobbágy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–36.CrossRefGoogle Scholar
  30. Kuzyakov Y, Friedel J, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32(11–12):1485–98.CrossRefGoogle Scholar
  31. Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–7.PubMedCrossRefGoogle Scholar
  32. Le Quéré C, Raupach MR, Canadell JG, Marland G et al. 2009. Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–6.CrossRefGoogle Scholar
  33. Lloyd J, Taylor J. 1994. On the temperature dependence of soil respiration. Funct Ecol 8(3):315–23.CrossRefGoogle Scholar
  34. Lobo Alonzo PJ. 2004. Changes in soil carbon and nitrogen associated with switchgrass production. College Station, TX: M.S., Texas A&M University.Google Scholar
  35. Ma Z, Wood CW, Bransby DI. 2000. Impacts of soil management on root characteristics of switchgrass. Biomass Bioenergy 18(2):105–12.CrossRefGoogle Scholar
  36. Matamala RNL, Jastrow JD, Miller RMNL, Garten CT Jr. 2008. Temporal changes in C and N stocks of restored prairie: implications for C sequestration strategies. Ecol Appl 18:1470–88.PubMedCrossRefGoogle Scholar
  37. McLaughlin SB, Kszos LA. 2005. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28(6):515.CrossRefGoogle Scholar
  38. Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang X, Sokolov AP, Schlosser CA. 2009. Indirect emissions from biofuels: how important? Science 326(5958):1397–9.PubMedCrossRefGoogle Scholar
  39. Miresmailli S, Zeri M, Zangerl AR, Bernacchi CJ, Berenbaum MR, DeLucia EH. 2012. Impacts of herbaceous bioenergy crops on atmospheric volatile organic composition and potential consequences for global climate change. GCB Bioenergy [Epub ahead of print]. doi: 10.1111/j.1757-1707.2012.01189.x.
  40. Monti A, Zatta A. 2009. Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric Ecosyst Environ 132(3–4):252–9.CrossRefGoogle Scholar
  41. Murty D, Kirschbaum M, McMurtrie RE, McGilvray H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8:105–23.CrossRefGoogle Scholar
  42. Neukirchen D, Himken M, Lammel J, Czypionka-Krause U, Olfs H-W. 1999. Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11(3–4):301–9.CrossRefGoogle Scholar
  43. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG et al. 2011. A large and persistent carbon sink in the world’s forests. Science 333(6045):988–93.PubMedCrossRefGoogle Scholar
  44. R Development Core Team. 2008. R: a language and environment for statistical computing. Vienna, Australia: R Foundation for Statistical Computing. http://www.R-project.org. Accessed 1 May 2011.
  45. Rasse DP, Schabenberger O, Smucker AJM. 1999. Modifications of soil nitrogen pools in response to alfalfa root systems and shoot mulch. Agron J 91(3):471–7.CrossRefGoogle Scholar
  46. Rasse D, Rumpel C, Dignac M-F. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269(1):341–56.CrossRefGoogle Scholar
  47. Roberts MJ, Long SP, Tieszen LL, Beadle CL. 1993. Measurement of plant biomass and net primary production of herbaceous vegetation. In: Hall DO, Scurlock JMO, Bolhar-Nordenkampf HR, Leegood RC, Long SP, Eds. Photosynthesis and production in a changing environment: a field and laboratory manual. London: Chapman and Hall. Google Scholar
  48. Robertson GP, Hamilton SK, Del Grosso SJ, Parton WJ. 2011. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol Appl 21:1055–67.PubMedCrossRefGoogle Scholar
  49. Ryan MG, Law BE. 2005. Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27.CrossRefGoogle Scholar
  50. Schlesinger WH. 2005. Biogeochemistry: treatise on geochemistry, vol 8. 1st edn. Amsterdam: Elsevier Science.Google Scholar
  51. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56.PubMedCrossRefGoogle Scholar
  52. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H. 2008. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–40.PubMedCrossRefGoogle Scholar
  53. Somerville C, Youngs H, Taylor C, Davis SC, Long SP. 2010. Feedstocks for lignocellulosic biofuels. Science 329(5993):790–2.PubMedCrossRefGoogle Scholar
  54. Tilman D, Hill J, Lehman C. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314(5805):1598–600.PubMedCrossRefGoogle Scholar
  55. US Senate. 2007. Renewable Fuels, Consumer Protection, and Energy Efficiency Act of 2007 (S. 1419). Washington, DC: US Senate. June 21, 2007.Google Scholar
  56. Vanloocke A, Bernacchi CJ, Twine TE. 2010. The impacts of miscanthus × giganteus production on the Midwest US hydrologic cycle. GCB Bioenergy 2(4):180–91.Google Scholar
  57. Zenone T, Chen J, Deal MW, Wilske B, Jasrotia P, Xu J, Bhardwaj AK, Hamilton SK, Philip RG. 2011. CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. GCB Bioenergy 3(5):401–12.CrossRefGoogle Scholar
  58. Zeri M, Anderson-Teixeira K, Hickman G, Masters M, DeLucia E, Bernacchi CJ. 2011. Carbon exchange by establishing biofuel crops in Central Illinois. Agric Ecosyst Environ 144(1):319–29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kristina J. Anderson-Teixeira
    • 1
    • 2
    • 5
  • Michael D. Masters
    • 1
    • 2
  • Christopher K. Black
    • 1
    • 2
    • 3
  • Marcelo Zeri
    • 1
    • 2
    • 6
  • Mir Zaman Hussain
    • 1
  • Carl J. Bernacchi
    • 1
    • 2
    • 3
    • 4
  • Evan H. DeLucia
    • 1
    • 2
    • 3
  1. 1.Institute of Genomic BiologyUniversity of IllinoisUrbanaUSA
  2. 2.Energy Bioscience InstituteUniversity of IllinoisUrbanaUSA
  3. 3.Department of Plant BiologyUniversity of IllinoisUrbanaUSA
  4. 4.Photosynthesis Research Unit, US Department of AgricultureUniversity of IllinoisUrbanaUSA
  5. 5.Smithsonian Institution, Center for Tropical Forest Science-Smithsonian Institution Global Earth Observatory & Smithsonian Conservation Biology InstituteFront RoyalUSA
  6. 6.Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas EspaciaisCachoeira PaulistaBrazil

Personalised recommendations