Advertisement

Ecosystems

, Volume 15, Issue 8, pp 1295–1307 | Cite as

Carbon Dioxide in Boreal Surface Waters: A Comparison of Lakes and Streams

  • Gesa A. WeyhenmeyerEmail author
  • Pirkko Kortelainen
  • Sebastian Sobek
  • Roger Müller
  • Miitta Rantakari
Article

Abstract

The quantity of carbon dioxide (CO2) emissions from inland waters into the atmosphere varies, depending on spatial and temporal variations in the partial pressure of CO2 (pCO2) in waters. Using 22,664 water samples from 851 boreal lakes and 64 boreal streams, taken from different water depths and during different months we found large spatial and temporal variations in pCO2, ranging from below atmospheric equilibrium to values greater than 20,000 μatm with a median value of 1048 μatm for lakes (n = 11,538 samples) and 1176 μatm for streams (n = 11,126). During the spring water mixing period in April/May, distributions of pCO2 were not significantly different between stream and lake ecosystems (P > 0.05), suggesting that pCO2 in spring is determined by processes that are common to lakes and streams. During other seasons of the year, however, pCO2 differed significantly between lake and stream ecosystems (P < 0.0001). The variable that best explained the differences in seasonal pCO2 variations between lakes and streams was the temperature difference between bottom and surface waters. Even small temperature differences resulted in a decline of pCO2 in lake surface waters. Minimum pCO2 values in lake surface waters were reached in July. Towards autumn pCO2 strongly increased again in lake surface waters reaching values close to the ones found in stream surface waters. Although pCO2 strongly increased in the upper water column towards autumn, pCO2 in lake bottom waters still exceeded the pCO2 in surface waters of lakes and streams. We conclude that throughout the year CO2 is concentrated in bottom waters of boreal lakes, although these lakes are typically shallow with short water retention times. Highly varying amounts of this CO2 reaches surface waters and evades to the atmosphere. Our findings have important implications for up-scaling CO2 fluxes from single lake and stream measurements to regional and global annual fluxes.

Keywords

carbon CO2 climate seasonality boreal lake stream 

Notes

Acknowledgements

G.A.W. is a research fellow of the Royal Swedish Academy of Sciences supported by a grant from the Knut and Alice Wallenberg Foundation. Funding for this study was also received by the Nordic Centre of Excellence “CRAICC - Cryosphere-atmosphere interactions in a changing arctic climate” supported by NordForsk, the Swedish Research Council (621-2009-2711) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (214-2009-272 and the Strong Research Environment “CoW - Color of Water”). Many thanks go to the Swedish Environmental Protection Agency and the IVM laboratory for financing, sampling, and analyzing thousands of water samples. We are also grateful to the very constructive comments of two reviewers.

References

  1. Åberg J, Jansson M, Jonsson A. 2010. Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO2 in a boreal lake. J Geophys Res Biogeosci 115:10. doi: 10.1029/2009jg001085.CrossRefGoogle Scholar
  2. Atilla N, McKinley GA, Bennington V, Baehr M, Urban N, DeGrandpre M, Desai AR, Wu C. 2011. Observed variability of Lake Superior pCO2. Limnol Oceanogr 56:775–86.CrossRefGoogle Scholar
  3. Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60.CrossRefGoogle Scholar
  4. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nat Geosci 2:598–600.CrossRefGoogle Scholar
  5. Bellido JL, Tulonen T, Kankaala P, Ojala A. 2009. CO(2) and CH(4) fluxes during spring and autumn mixing periods in a boreal lake (Paajarvi, southern Finland). J Geophys Res 114:G04007.CrossRefGoogle Scholar
  6. Bergström I, Kortelainen P, Sarvala J, Salonen K. 2010. Effects of temperature and sediment properties on benthic CO(2) production in an oligotrophic boreal lake. Freshw Biol 55:1747–57.Google Scholar
  7. Cole JJ, Caraco NF, Kling GW, Kratz TK. 1994. Carbon-dioxide supersaturation in the surface waters of lakes. Science 265:1568–70.PubMedCrossRefGoogle Scholar
  8. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–84.CrossRefGoogle Scholar
  9. Einola E, Rantakari M, Kankaala P, Kortelainen P, Ojala A, Pajunen H, Makela S, Arvola L. 2011. Carbon pools and fluxes in a chain of five boreal lakes: a dry and wet year comparison. J Geophys Res 116:G03009. doi: 10.1029/2010jg001636.CrossRefGoogle Scholar
  10. Erlandsson M, Buffam I, Fölster J, Laudon H, Temnerud J, Weyhenmeyer GA, Bishop K. 2008. Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Glob Change Biol 14:1191–8.CrossRefGoogle Scholar
  11. Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–81.PubMedCrossRefGoogle Scholar
  12. Humborg C, Mörth CM, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekkot V. 2009. CO(2) supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Change Biol 16:1966–78.CrossRefGoogle Scholar
  13. Huotari J, Ojala A, Peltomaa E, Pumpanen J, Hari P, Vesala T. 2009. Temporal variations in surface water CO2 concentration in a boreal humic lake based on high-frequency measurements. Boreal Environ Res 14:48–60.Google Scholar
  14. Jonsson A, Meili M, Bergström AK et al. 2001. Whole-lake mineralization of allochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnol Oceanogr 46:1691–700.CrossRefGoogle Scholar
  15. Jonsson A, Aberg J, Jansson M. 2007a. Variations in pCO(2) during summer in the surface water of an unproductive lake in northern Sweden. Tellus Ser B 59:797–803.CrossRefGoogle Scholar
  16. Jonsson A, Algesten G, Bergstrom AK, Bishop K, Sobek S, Tranvik LJ, Jansson M. 2007b. Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J Hydrol 334:141–50.CrossRefGoogle Scholar
  17. Kaiser E, Sulzberger B. 2004. Phototransformation of riverine dissolved organic matter (DOM) in the presence of abundant iron: effect on DOM bioavailability. Limnol Oceanogr 49:540–54.CrossRefGoogle Scholar
  18. Keller W. 2007. Implications of climate warming for boreal shield lakes: a review and synthesis. Environ Rev 15:99–112.CrossRefGoogle Scholar
  19. Kelly CA, Fee E, Ramlal PS, Rudd JWM, Hesslein RH, Anema C, Schindler EU. 2001. Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol Oceanogr 46:1054–64.CrossRefGoogle Scholar
  20. Kortelainen P, Rantakari M, Huttunen JT, Mattsson T, Alm J, Juutinen S, Larmola T, Silvola J, Martikainen PJ. 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Glob Change Biol 12:1554–67.CrossRefGoogle Scholar
  21. Kosten S, Roland F, Marques D, Van Nes EH, Mazzeo N, Sternberg LDL, Scheffer M, Cole JJ. 2010. Climate-dependent CO2 emissions from lakes. Global Biogeochem Cycles 24:7. doi: 10.1029/2009gb003618.CrossRefGoogle Scholar
  22. Laurion I, Vincent WF, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R. 2010. Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55:115–33.CrossRefGoogle Scholar
  23. Marotta H, Duarte CM, Meirelles-Pereira F, Bento L, Esteves FA, Enrich-Prast A. 2010. Long-term CO2 variability in two shallow tropical lakes experiencing episodic eutrophication and acidification events. Ecosystems 13:382–92.CrossRefGoogle Scholar
  24. McCallister SL, Bauer JE, Kelly J, Ducklow HW. 2005. Effects of sunlight on decomposition of estuarine dissolved organic C, N and P and bacterial metabolism. Aquat Microb Ecol 40:25–35.CrossRefGoogle Scholar
  25. Moran MA, Sheldon WM, Zepp RG. 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45:1254–64.CrossRefGoogle Scholar
  26. Rantakari M, Kortelainen P. 2005. Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Glob Change Biol 11:1368–80.CrossRefGoogle Scholar
  27. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–20.PubMedCrossRefGoogle Scholar
  28. Sobek S, Algesten G, Bergstrom AK, Jansson M, Tranvik LJ. 2003. The catchment and climate regulation of pCO(2) in boreal lakes. Glob Change Biol 9:630–41.CrossRefGoogle Scholar
  29. Stets EG, Striegl RG, Aiken GR, Rosenberry DO, Winter TC. 2009. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J Geophys Res 114:G01008. doi: 10.1029/2008jg000783.CrossRefGoogle Scholar
  30. Striegl RG, Michmerhuizen CM. 1998. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol Oceanogr 43:1519–29.CrossRefGoogle Scholar
  31. Stumm W, Morgan JJ. 1996. Aquatic chemistry: chemical equilibria and rates in natural waters. New York: Wiley-Interscience.Google Scholar
  32. Teodoru CR, Del Giorgio PA, Prairie YT, Camire M. 2009. Patterns in pCO(2) in boreal streams and rivers of northern Quebec, Canada. Global Biogeochem Cycles 23:11. doi: 10.1029/2008gb003404.CrossRefGoogle Scholar
  33. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314.CrossRefGoogle Scholar
  34. Vähätalo AV, Salkinoja-Salonen M, Taalas P, Salonen K. 2000. Spectrum of the quantum yield for photochemical mineralization of dissolved organic carbon in a humic lake. Limnol Oceanogr 45:664–76.CrossRefGoogle Scholar
  35. Vähätalo AV, Salonen K, Munster U, Järvinen M, Wetzel RG. 2003. Photochemical transformation of allochthonous organic matter provides bioavailable nutrients in a humic lake. Archiv für Hydrobiologie 156:287–314.CrossRefGoogle Scholar
  36. von Wachenfeldt E, Tranvik LJ. 2008. Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11:803–14.CrossRefGoogle Scholar
  37. Weyhenmeyer GA. 2009. Increasing dissimilarity of water chemical compositions in a warmer climate. Global Biogeochemical Cycles 23:GB2004. doi: 10.1029/2008gb003318.CrossRefGoogle Scholar
  38. Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Gesa A. Weyhenmeyer
    • 1
    • 2
    Email author
  • Pirkko Kortelainen
    • 3
  • Sebastian Sobek
    • 1
  • Roger Müller
    • 1
  • Miitta Rantakari
    • 3
    • 4
  1. 1.Department of Ecology and Genetics/LimnologyUppsala UniversityUppsalaSweden
  2. 2.Department of Aquatic Sciences and AssessmentSwedish University of AgricultureUppsalaSweden
  3. 3.Finnish Environment InstituteHelsinkiFinland
  4. 4.Finnish Forest Research InstituteVantaaFinland

Personalised recommendations