, Volume 15, Issue 7, pp 1158–1172 | Cite as

Persistence of the Slow Growing Conifer Pilgerodendron uviferum in Old-Growth and Fire-Disturbed Southern Bog Forests

  • Jan R. BannisterEmail author
  • Pablo J. Donoso
  • Jürgen Bauhus


In spite of the extensive area of bogs in the southern cone of South America, there have been very few studies on structure and dynamics of conifer bog forests in this region. Previously, it has been assumed that in the absence of intensive disturbance, the dominant conifer Pilgerodendron uviferum (D. Don) Florin would be replaced through other angiosperm species. Here we hypothesized (a) that this conifer can persist without intensive disturbances and develop into old-growth forests with continuing regeneration and (b) that high-severity disturbances through fire threaten its local persistence. To test this hypotheses, we analyzed diameter and age structure, foliar and soil nutrient levels and the light environment of old-growth and fire-disturbed P. uviferum stands on Chiloé Island (43ºS) in North Patagonia. Longevity (>880 years), extremely slow growth (<1 mm diameter per year) and tolerance to shade and stress are the main mechanisms of P. uviferum persistence in nutrient-poor and waterlogged conditions. Hence, old-growth P. uviferum forests are not a transitional phase in forest succession and may be maintained in the landscape for many centuries or millennia. However, in fire-disturbed stands, live trees of the species were rare and regeneration negligible, showing that high-severity fires can eliminate the species from parts of the landscape, where neither propagules nor seed trees survive. This underpins the importance of biological legacies such as seed trees for the recovery of disturbed sites, and points to the need for active restoration approaches to restore fire-degraded P. uviferum forests.


Chiloé Island Forest dynamics Light availability N/P ratio Persistence mechanisms Sphagnum 



We are especially grateful to the administration and staff of the Tantauco Park for constant help and support in the field. N. Carrasco, R. Ramirez, G. Löffler, J. Flade and D. Rieck assisted under difficult conditions in the field. Without their help this study could not have been done. For assistance in the laboratory we thank R. Nitschke, N. Briggs, G. Löffler and M. Schmidt. D. Forrester, T. Kahl and H. Stark helped with statistical analyses. Jan Bannister received a DAAD-CONICYT scholarship to support his PhD studies at the University of Freiburg, where he participated in the graduate school “Environment, Society and Global Change”. This research was also financially supported through grants by the Georg-Ludwig-Hartig and Futuro foundations.


  1. Aravena JC. 2007. Reconstructing climate variability using tree rings and glacier fluctuations in the Southern Chilean Andes. PhD thesis. Ontario: University of Western Ontario.Google Scholar
  2. Bannister JR, Lara A, Le Quesne C. 2008. Estructura y dinámica de bosques de Pilgerodendron uviferum afectados por incendios en la Cordillera de la Costa de la Isla Grande de Chiloé. Bosque 29:33–43.Google Scholar
  3. Bond WJ. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol J Linn Soc 36:227–49.CrossRefGoogle Scholar
  4. Burns BR. 1993. Fire-induced dynamics of Araucaria araucana-Nothofagus antarctica forest in the Southern Andes. J Biogeogr 20:669–85.CrossRefGoogle Scholar
  5. Coomes DA, Allen RB, Bentley WA, Burrows LE, Canham CD, Fagan L, Forsyth DM, Gaxiola-Alcantar A, Parfitt RL, Ruscoe WA, Wardle DA, Wilson DJ, Wright EF. 2005. The hare, the tortoise and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filtering. J Ecol 93:918–35.CrossRefGoogle Scholar
  6. Crawford RMM, Jeffree CE, Rees WG. 2003. Paludification and forest retreat in northern oceanic environments. Ann Bot 91:213–26.PubMedCrossRefGoogle Scholar
  7. Cruz G, Lara A. 1981. Tipificación, cambio de estructura y normas de manejo para Ciprés de las Guaitecas (Pilgerodendron uviferum D. Don Florin) en la isla Grande de Chiloé. For. Eng. thesis. Santiago: Universidad de Chile.Google Scholar
  8. di Castri F, Hajek E. 1976. Bioclimatología de Chile. Santiago: Vicerrectoría Académica de la Universidad Católica de Chile.Google Scholar
  9. Duncan RP. 1989. An evaluation of errors in tree age estimates based on increment cores in Kahikatea (Dacrycarpus dacrydioides). N Z Nat Sci 16:31–7.Google Scholar
  10. Fenton N, Lecomte N, Legare S, Bergeron Y. 2005. Paludification in black spruce (Picea mariana) forests of eastern Canada: potential factors and management implications. Forest Ecol Manage 213:151–9.CrossRefGoogle Scholar
  11. Franklin JF. 1990. Biological legacies: a critical management concept from Mt. St. Helens. Trans N Am Wildlife Nat Resour Conf 55:215–19.Google Scholar
  12. Franklin JF, Spies TA, Pelt RV, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen J. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecol Manage 155:399–423.CrossRefGoogle Scholar
  13. Gaxiola A, McNeill SM, Coomes DA. 2010. What drives retrogressive succession? Plant strategies to tolerate infertile and poorly drained soils. Funct Ecol 24:714–22.CrossRefGoogle Scholar
  14. Gorham E. 1991. Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–95.CrossRefGoogle Scholar
  15. Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–94.CrossRefGoogle Scholar
  16. Hechenleitner P, Gardner M, Thomas P, Echeverria C, Escobar B, Brownless P, Martínez C. 2005. Plantas amenazadas del centro-Sur de Chile. Distribución, conservación y propagación. Chile: Universidad Austral de Chile and Real Jardín Botánico de Edimburgo.Google Scholar
  17. Holz A. 2010. Climatic and human influences on fire regimes and forest dynamics in temperate rainforests in southern Chile. PhD. thesis. Boulder: University of Colorado.Google Scholar
  18. Holz A, Veblen TT. 2009. Pilgerodendron uviferum: the southernmost tree-ring fire recorder species. Ecoscience 16:322–9.CrossRefGoogle Scholar
  19. Hörnberg G, Ohlson M, Zackrisson O. 1995. Stand dynamics, regeneration patterns and long-term continuity in boreal old-growth Picea abies swamp-forests. J Veg Sci 6:291–8.CrossRefGoogle Scholar
  20. Koerselman W, Meuleman AFM. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–50.CrossRefGoogle Scholar
  21. König N. 2005. Handbuch forstliche Analytik. Gessellschaft für Analytik. Bonn: Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft.Google Scholar
  22. Kuuluvainen T, Aapala K, Ahlroth P, Kuusinen M, Lindholm T, Sallantaus T, Siitonen J, Tukia H. 2002. Principles of ecological restoration of boreal forested ecosystems: Finland as an example. Silva Fennica 36:409–22.Google Scholar
  23. Lara A, Fraver S, Aravena JC, Wolodarsky-Franke A. 1999. Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile′s Cordillera Pelada. Ecoscience 6:100–9.Google Scholar
  24. Lara A, Donoso C, Escobar B, Rovere A, Premoli A, Soto DP, Bannister JR. 2006. Pilgerodendron uviferum (D. Don) Florin. In: Donoso C, Ed. Las especies arbóreas de los bosques templados de Chile y Argentina, autoecología. Valdivia: Marisa Cuneo. p 82–91.Google Scholar
  25. Lavoie M, Paré D, Fenton N, Groot A, Taylor K. 2005. Paludification and management of forested peatlands in Canada: a literature review. Environ Rev 13:21–50.CrossRefGoogle Scholar
  26. Lumley S, Switsur R. 1993. Late Queaternary chronology of the Taitao Peninsula, southern Chile. J Q Sci 8:161–5.CrossRefGoogle Scholar
  27. Lusk CH. 2001. Leaf life spans of some conifers of the temperate forests of South America. Rev Chil Hist Nat 74:711–18.Google Scholar
  28. Mansilla C. 2008. Reclutamiento post—disturbios de Ciprés de las Guaitecas (Pilgerodendron uviferum (D. Don) Florin) en comunidades de turbera, Península de Brunswick, Región de Magallanes, Chile. Ms. Sc. thesis. Punta Arenas: Universidad de Magallanes.Google Scholar
  29. Martínez O. 1981. Flora y fitosociología de un relicto de Pilgerodendron uvifera (D. Don) Florin en el fundo San Pablo de Tregua (Valdivia-Chile). Bosque 4:3–11.Google Scholar
  30. Moroni MT, Hagemann U, Beilman DW. 2010. Dead wood is buried and preserved in a Labrador boreal forest. Ecosystems 13:452–8.CrossRefGoogle Scholar
  31. Niklasson M. 2002. A comparison of three age determination methods for suppressed Norway spruce: implications for age structure analysis. For Ecol Manage 161:279–88.CrossRefGoogle Scholar
  32. Oliver C, Larson B. 1996. Forest stand dynamics. New York: Wiley.Google Scholar
  33. Parent S, Messier C. 1996. A simple and efficient method to estimate microsite light availability under a forest canopy. Can J For Res 26:151–4.CrossRefGoogle Scholar
  34. Pérez CA, Armesto JJ, Torrealba C, Carmona MR. 2008. Litterfall dynamics and nitrogen use efficiency in two evergreen temperate rainforests of southern Chile. Austral Ecol 28:591–600.CrossRefGoogle Scholar
  35. Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL. 2004. Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia 139:267–76.PubMedCrossRefGoogle Scholar
  36. Rovere A, Premoli A, Aravena JC, Lara A. 2004. Variación en Pilgerodendron uviferum (D.Don) Florín (Ciprés de las Guaitecas). In: Donoso C, Premoli A, Gallo L, Ipinza R, Eds. Variación intraespecífica en las especies arbóreas de los bosques templados. Santiago: Editorial Universitaria. p. 253–75.Google Scholar
  37. Rozas V. 2003. Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecol 167:193–212.CrossRefGoogle Scholar
  38. Saldana A, Lusk C. 2003. Influence of overstorey species identity on resource availability and variation in composition of advanced regeneration in a temperate rainforest in southern Chile. Rev Chil Hist Nat 76:639–50.CrossRefGoogle Scholar
  39. Shaw AJ, Cox CJ, Boles SB. 2003. Global patterns in peatmoss biodiversity. Mol Ecol 12:2553–70.PubMedCrossRefGoogle Scholar
  40. Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D. 2007. Forest productivity decline caused by successional paludification of boreal soils. Ecol Appl 17:1619–37.PubMedCrossRefGoogle Scholar
  41. Sokal R, Rohlf FJ. 1995. Biometry. The principles and practice of statistics in biological research. New York: W.H. Freeman and Company.Google Scholar
  42. Solís C, Becerra J, Flores C, Robledo J, Silva M. 2004. Antibacterial and antifungal terpenes from Pilgerodendron uviferum (D. Don) Florin. J Chil Chem Soc 49:157–61.CrossRefGoogle Scholar
  43. Soto DP, Figueroa H. 2008. Efectos de las alteraciones antrópicas sobre la estructura y composición de rodales de Pilgerodendron uviferum en la Cordillera de la Costa de Chile. Ecol Austral 18:13–25.Google Scholar
  44. Stokes MA, Smiley TL. 1968. An introduction to tree-ring dating. Chicago: University of Chicago Press.Google Scholar
  45. Szeicz JM, Haberle SG, Bennett KD. 2003. Dynamics of North Patagonian rainforests from fine-resolution pollen, charcoal and tree-ring analysis, Chonos Archipelago, Southern Chile. Austral Ecol 28:413–22.CrossRefGoogle Scholar
  46. Taylor AR, Chen HYH. 2011. Multiple successional pathways of boreal forest stands in central Canada. Ecography 34:208–19.CrossRefGoogle Scholar
  47. Veblen TT, Burns BR, Kitzberger T, Lara A, Villalba R. 1995. The ecology of the conifers of southern South America. In: Enright NJ, Hill RS, Eds. Ecology of the Southern Conifers. Melbourne: Melbourne University Press. p 120–55.Google Scholar
  48. Villagrán C. 1988. Late quaternary vegetation of southern Isla Grande de Chiloé, Chile. Quat Res 29:294–306.CrossRefGoogle Scholar
  49. Walter KS, Gillet HJ. 1998. 1997 IUCN Red list of threatened plants. Gland: IUCN.Google Scholar
  50. Weinzierl W, Dietze G. 2000. Bestimmung der austauschbaren Kationen ohne Veränderung des natürlichen Boden-pH, auch effektive Kationenaustauschkapazität genannt. Freiburg: Landesamt für Geologie, Rohstoffe und Bergbau: Methodenanleitung.Google Scholar
  51. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. 2004. The worldwide leaf economics spectrum. Nature 428:821–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jan R. Bannister
    • 1
    Email author
  • Pablo J. Donoso
    • 2
  • Jürgen Bauhus
    • 1
  1. 1.Institute of Silviculture, Faculty of Forest and Environmental SciencesAlbert-Ludwigs University FreiburgFreiburgGermany
  2. 2.Institute of Silviculture, Faculty of Forest Sciences and Natural ResourcesUniversidad Austral de ChileValdiviaChile

Personalised recommendations