Ecosystems

, Volume 15, Issue 4, pp 674–694 | Cite as

Century-Scale Responses of Ecosystem Carbon Storage and Flux to Multiple Environmental Changes in the Southern United States

  • Hanqin Tian
  • Guangsheng Chen
  • Chi Zhang
  • Mingliang Liu
  • Ge Sun
  • Arthur Chappelka
  • Wei Ren
  • Xiaofeng Xu
  • Chaoqun Lu
  • Shufen Pan
  • Hua Chen
  • Dafeng Hui
  • Steven McNulty
  • Graeme Lockaby
  • Eric Vance
Article

Abstract

Terrestrial ecosystems in the southern United States (SUS) have experienced a complex set of changes in climate, atmospheric CO2 concentration, tropospheric ozone (O3), nitrogen (N) deposition, and land-use and land-cover change (LULCC) during the past century. Although each of these factors has received attention for its alterations on ecosystem carbon (C) dynamics, their combined effects and relative contributions are still not well understood. By using the Dynamic Land Ecosystem Model (DLEM) in combination with spatially explicit, long-term historical data series on multiple environmental factors, we examined the century-scale responses of ecosystem C storage and flux to multiple environmental changes in the SUS. The results indicated that multiple environmental changes shifted SUS ecosystems from a C source of 1.20 ± 0.56 Pg (1 Pg = 1015 g) during the period 1895 to 1950, to a C sink of 2.00 ± 0.94 Pg during the period 1951 to 2007. Over the entire period spanning 1895–2007, SUS ecosystems were a net C sink of 0.80 ± 0.38 Pg. The C sink was primarily due to an increase in the vegetation C pool, whereas the soil C pool decreased during the study period. The spatiotemporal changes of C storage were caused by changes in multiple environmental factors. Among the five factors examined (climate, LULCC, N deposition, atmospheric CO2, and tropospheric O3), elevated atmospheric CO2 concentration was the largest contributor to C sequestration, followed by N deposition. LULCC, climate, and tropospheric O3 concentration contributed to C losses during the study period. The SUS ecosystem C sink was largely the result of interactive effects among multiple environmental factors, particularly atmospheric N input and atmospheric CO2.

Keywords

climate change carbon storage and flux land use change Dynamic Land Ecosystem Model (DLEM) southern United States 

References

  1. Alexander RB, Smith RA. 1990. County-level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985. U.S. Geological Survey Open-File Report 90-130.Google Scholar
  2. Birdsey RA, Lewis BM. 2003. Carbon in U.S. forests and wood products, 1987–1997: state-by-state estimates. Gen. Tech. Rep. NE-310, Washington, DC: U.S. Department of Agriculture, Forest Service.Google Scholar
  3. Birdsey RA, Pregitzer K, Lucier A. 2006. Forest carbon management in the United States: 1600–2100. J Environ Qual 35:1461–9.PubMedCrossRefGoogle Scholar
  4. Boden TA, Marland G, Andres RJ. 2009. Global, regional, and National fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA. doi:10.3334/CDIAC/00001.
  5. Boggs JL, McNulty SG, Gavazzi MJ, Moore JM. 2005. Tree growth, foliar chemistry, and nitrogen cycling across a nitrogen deposition gradient in southern Appalachian deciduous forests. Can J For Res 35:1901–13.CrossRefGoogle Scholar
  6. Chameides WL, Kasibhatla PS, Yienger J, Levy H. 1994. Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264:74–7.PubMedCrossRefGoogle Scholar
  7. Chapelka AH, Samulson LJ. 1998. Ambient ozone effects on forest trees of the eastern United States: a review. New Phytologist 139:91–108.CrossRefGoogle Scholar
  8. Chen H, Tian H. 2005. Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? J Integr Plant Biol 47:1288–302. doi:10.1111/j.1744-7909.2005.00211.x.CrossRefGoogle Scholar
  9. Chen H, Tian H, Liu M, Melillo J, Pan S, Zhang C. 2006. Effect of land-cover change on terrestrial carbon dynamics in the Southern USA. J Environ Qual 35:1533–47.PubMedCrossRefGoogle Scholar
  10. Chen G, Tian H, Zhang C, Liu M, Ren W, Zhu W, Chappelka A, Prior SA, Lockaby GB. 2012. Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change. doi:10.1007/s10584-012-0410-z.Google Scholar
  11. Churkina G, Trusilova K, Vetter M, Dentener F. 2007. Contribution of nitrogen deposition and forest regrowth to terrestrial carbon uptake. Carbon Balance Manag 2:5. doi:10.1186/1750-0680-2-5.PubMedCrossRefGoogle Scholar
  12. Curtis PS, Wang X. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313.Google Scholar
  13. Delcourt HR, Harris WF. 1980. Carbon budget of the southeastern United States: analysis of historic change in trend from source to sink. Science 210:321–3.PubMedCrossRefGoogle Scholar
  14. Dentener FJ. 2006. Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Available online http://daac.ornl.gov/ from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA.
  15. Enting IG, Wigley TML, Heimann M. 1994. Future emissions and concentrations of carbon dioxide: key ocean/atmosphere/land analyses. CSIRO Division of Atmospheric Research Tech Paper No. 31, Melbourne.Google Scholar
  16. Ellsworth DS. 1999. CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant Cell Environ 22:461–72.Google Scholar
  17. Felzer B, Kicklighter DW, Melillo JM, Wang C, Zhuang Q, Prinn R. 2004. Effects of ozone on net primary production and carbon sequestration in the Conterminous United States using a biogeochemistry model. Tellus 56B:230–48.Google Scholar
  18. Finzi AC, Moore DJ, DeLucia EH, Kim HS, Jackson RB, Lichter J, McCarthy H, Oren R, Pippen JS, Schlesinger WH. 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25.PubMedCrossRefGoogle Scholar
  19. Han FX, Plodinec MJ, Su Y, Monts DL, Li Z. 2007. Terrestrial carbon pools in southeast and south-central United States. Climatic Change 84:191–202.CrossRefGoogle Scholar
  20. Hansen C, Yonavjak L, Clarke C, Minnemeyer S, Boisrobert L, Leach A, Schleeweis K. 2010. Southern forests for the future. World Resources Institute. http://www.wri.org/project/southern-forests.
  21. Heck WW, Cure WW, Rawlings JO, Zaragoza LJ, Heagle AS, Heggestad HE, Kohut RJ, Kress LW, Temple PJ. 1984. Assessing impacts of ozone on agricultural crops: II. Crop yield functions and alternative exposure statistics. J Air Pollut Control Assoc 34:810–17.Google Scholar
  22. Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, McKerrow A, VanDriel JN, Wickham J. 2007. Completion of the 2001 National Land Cover Database for the conterminous United States. Photogram Eng Remote Sens 73:337–41.Google Scholar
  23. Houghton RA. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–90.Google Scholar
  24. Houghton RA, Hackler JL, Lawrence KT. 1999. The U.S. carbon budget: contributions from land-use change. Science 285:574–8.PubMedCrossRefGoogle Scholar
  25. Huntzinger DN, Post WM, Wei Y, Michalak AM, West TO, Jacobson AR, Baker IT, Chen JM, Davis KJ, Hayes DJ, Hoffman FM, Jain AK, Liu S, McGuire AD, Neilson RP, Poulter B, Raczka BM, Tian HQ, Thornton P, Tomelleri E, Viovy N, Xiao J, Zeng N, Zhao M, Cook R. 2012. North American Carbon Project (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecol Model 232:144–57. doi:10.1016/j.ecolmodel.2012.02.004.CrossRefGoogle Scholar
  26. Jain A, Yang X, Kheshgi H, McGuire AD, Post W, Kicklighter D. 2009. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Glob Biogeochem Cycles. doi:10.1029/2009GB003519.Google Scholar
  27. Johnson DW. 2006. Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology 87:64–75.PubMedCrossRefGoogle Scholar
  28. Karl TR, Melillo JM, Peterson TC. 2009. Global climate change impacts in the United States. Cambridge: Cambridge University Press.Google Scholar
  29. Liu M, Tian H, Chen G, Ren W, Zhang C, Liu J. 2008. Effects of land use and land cover change on evapotranspiration and water yield in China during the 20th century. J Am Water Resour Assoc (JAWRA) 44:1193–207. doi:10.1111/j.1752-1688.2008.00243.CrossRefGoogle Scholar
  30. Liu M, Tian H, Lu C, Xu X, Chen G, Ren W. 2012. Effects of multiple environment stresses on evapotranspiration and runoff over eastern China. J Hydrol 426–427:39–54.CrossRefGoogle Scholar
  31. Lu C, Tian H, Liu M, Ren W, Xu X, Chen GS, Zhang C. 2012. Effect of nitrogen deposition on China’s terrestrial carbon uptake in the context of multi-factor environmental changes. Ecol Appl 22:53–75.PubMedCrossRefGoogle Scholar
  32. Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric CO2. BioScience 54:731–9.CrossRefGoogle Scholar
  33. Luo Y, Gerten D, le Maire G, Parton WJ, Weng ES, Zhou XH, Keough C, Beier C, Ciais P, Cramer W, Dukes JS, Emmett B, Hanson PJ, Knapp A, Linder S, Nepstad D, Rustad L. 2008. Modelled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones. Glob Change Biol 14:1986–99.CrossRefGoogle Scholar
  34. Malmsheimer RW, Heffernan P, Brink S, Crandall D, Deneke F, Galik C, Gee E, Helms JA, McClure N, Mortimer M, Ruddell S, Smith M, Stewart J. 2008. Forest management solutions for mitigating climate change in the United States. J Forestry 106:115–73.Google Scholar
  35. McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore IIIB, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. Glob Biogeochem Cycles 15:183–206.CrossRefGoogle Scholar
  36. McLaughlin SB, Nosal M, Wullschleger SD, Sun G. 2007. Interactive effects of ozone and climate on tree growth and water use in a Southern Appalachian forest in the USA. New Phytologist 174:109–24.PubMedCrossRefGoogle Scholar
  37. McNulty SG, Boggs JL. 2010. A conceptual framework: redefining forest soil’s critical acid loads under a changing climate. Environ Pollut 158:2053–8.PubMedCrossRefGoogle Scholar
  38. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon cycle feedbacks to the climate system. Science 298:2173–6.PubMedCrossRefGoogle Scholar
  39. Mesinger F, DiMego G, Kalnay E, Shafran P, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery EH, Ek M, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W. 2006. North American regional reanalysis. Bull Am Meteorol Soc. doi:10.1175/BAMS-B7-3-343.Google Scholar
  40. Miller DA, White RA. 1998. A conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. Earth Interact 2:1–26.CrossRefGoogle Scholar
  41. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702.CrossRefGoogle Scholar
  42. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis R, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci 102:18052–6.PubMedCrossRefGoogle Scholar
  43. Ollinger SV, Aber JD, Reich PB, Freuder RJ. 2002. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Glob Change Biol 8:545–62.CrossRefGoogle Scholar
  44. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2- enriched atmosphere. Nature 411:469–72.PubMedCrossRefGoogle Scholar
  45. Oreskes N, Shrader-Frechette K, Belitz K. 1994. Verification, validation, and confirmation of numerical models in earth sciences. Science 263:641–6.PubMedCrossRefGoogle Scholar
  46. Pacala S, Birdsey R, Bridgham S, Conant RT, Davis K, Hales B, Houghton RA, Jenkins JC, Johnston M, Marland G, Paustian K. 2007. The North American carbon budget past and present. In: King AW, Dilling L, Zimmerman GP, Fairman DM, Houghton RA, Marland G, Rose AZ, Wilbanks TJ, Eds. The first state of the carbon cycle report (SOCCR): the North American carbon budget and implications for the global carbon cycle. Asheville: National Oceanic and Atmospheric Administration, National Climatic Data Center. p 29–36.Google Scholar
  47. Pan Y, Chen JM, Birdsey R, McCullough K, He L, Deng F. 2011. Age structure and disturbance legacy of North American forests. Biogeosciences 8:715–32.CrossRefGoogle Scholar
  48. Pardo LH, Templer PH, Goodale C, Duke S, Groffman P, Adams MB, Boeckx P, Boogs J, Campbell J, Colman B, Compton J, Emmett B, Gundersen P, Kjonaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell M, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ros D, Rueth H, Rustad L, Shaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W. 2006. Regional assessment of N saturation using foliar 15N. Biogeochemistry 80:143–71.CrossRefGoogle Scholar
  49. Peters W, Jacobson AR, Sweeney C, Andrews E, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Pétron G, Hirsch I, Worthy DEJ, van der Werf GR, Randerson JT, Wennberg PO, Krol MC, Tans PP. 2007. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci 104:18925–30.PubMedCrossRefGoogle Scholar
  50. Popper KR. 1968. The logic of scientific discovery. New York: Harper Torchbooks.Google Scholar
  51. Pye JM 1988. Impact of ozone on the growth and yield of tress: a review. J Environ Qual 17:347–60.Google Scholar
  52. Rastetter EB. 1996. Validating models of ecosystem response to global change. Bioscience 46:190–8.CrossRefGoogle Scholar
  53. Rastetter EB, Ågren GI, Shaver GR. 1997. Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model. Ecol Appl 7:444–60.Google Scholar
  54. Ramankutty N, Gibbs HK, Achard F, DeFries R, Foley JA, Houghton RA. 2007. Challenges to estimating carbon emissions from tropical deforestation. Glob Change Biol 13:51–66.CrossRefGoogle Scholar
  55. Reay DS, Dentener F, Smith P, Grace J, Feely RA. 2008. Global nitrogen deposition and carbon sinks. Nat Geosci 430:1–7.Google Scholar
  56. Ren W, Tian HQ, Chen GS, Liu ML, Zhang C, Chappelka A, Pan S. 2007a. Influence of ozone pollution and climate variability on grassland ecosystem productivity across China. Environ Pollut 149:327–35.PubMedCrossRefGoogle Scholar
  57. Ren W, Tian H, Liu M, Zhang C, Chen G, Pan S, Felzer B, Xu X. 2007b. Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. J Geophys Res 112:D22S09. doi:10.1029/2007JD008521.
  58. Ren W, Tian H, Tao B, Chappelka A, Sun G, Lu C, Liu M, Chen G, Xu X. 2011a. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems assessed with the dynamic land ecosystem model (DLEM). Glob Ecol Biogeogr 20:391–406.CrossRefGoogle Scholar
  59. Ren W, Tian HQ, Xu XF, Liu ML, Lu CQ, Chen GS, Mellio J, Reilly J, Liu JY. 2011b. Spatial and temporal patterns of CO2 and CH4 fluxes in China’s croplands in response to multifactor environmental changes. Tellus B 63:222–40.CrossRefGoogle Scholar
  60. Richardson AD, Anderson RS, Arain MA, other NACP Participants. 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob Change Biol 18:566–84.CrossRefGoogle Scholar
  61. Ruddy BC, Lorenz DL, Mueller DK. 2006. County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001. U.S. Geological Survey Scientific Investigations Report 2006-5012. http://pubs.usgs.gov/sir/2006/5012/.
  62. Schimel D, House J, Hibbard K, Bousquet P, Ciais P, Peylin P, Apps M, Baker D, Bondeau A, Brasswell R, Canadell J, Churkina G, Cramer W, Denning S, Field C, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo J, Moore BIII, Murdiyarso D, Noble I, Pacala S, Prentice C, Raupach M, Rayner P, Scholes B, Steffen W, Wirth C. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–72.PubMedCrossRefGoogle Scholar
  63. Schimel D, Melillo JM, Tian H, McGuire AD, Kicklighter DW, Kittel T, Rosenbloom N, Running SW, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B. 2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–6.PubMedCrossRefGoogle Scholar
  64. Schwalm CR, Williams CA, Schaefer K, NACP participants. 2010. A model-data intercomparison of CO2 exchange across North America: results from the North American carbon program site synthesis. J Geophys Res 115:G00H05. doi:10.1029/2009JG001229.
  65. Smith WB, Miles PD, Perry CH, Pugh SA. 2009. Forest Resources of the United States, 2007. General Technical Report WO-78. U.S. Department of Agriculture, Forest Service, Washington, DC.Google Scholar
  66. Sulman B, Desai A, Schroeder N, Ricciuto D, Barr A, Richardson A, Flanagan L, Lafleur P, Tian H, Chen G, Grant R, Poulter B, Verbeeck H, Ciais P, Ringeval B, Baker I, Schaefer K, Luo Y, Weng E. 2012. Impact of hydrological variations on modeling of peatland CO2 fluxes: results from the North American carbon program site synthesis. J Geophys Res. doi:10.1029/2011JG001862.
  67. Thenkabail PS, Biradar CM, Turral H, Noojipady P, Li YJ, Vithanage J, Dheeravath V, Velpuri M, Schull M, Cai XL, Dutta R. 2006. An irrigated area map of the world (1999) derived from remote sensing. Research Report 105, International Water Management Institute, Colombo, Sri Lanka.Google Scholar
  68. Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich J. 1999. The sensitivity of terrestrial carbon storage to historical atmospheric CO2 and climate variability in the United States. Tellus 51B:414–52.Google Scholar
  69. Tian H, Chen G, Liu M, Zhang C, Sun G, Lu C, Xu X, Ren W, Pan S, Chappelka A. 2010a. Model estimates of ecosystem net Primary productivity, evapotranspiration, and water use efficiency in the southern United States during 1895–2007. For Ecol Manag 259:1311–27.CrossRefGoogle Scholar
  70. Tian H, Xu X, Liu M, Ren W, Zhang C, Chen G, Lu C. 2010b. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosciences 7:2673–94.CrossRefGoogle Scholar
  71. Tian H, Xu X, Lu C, Liu M, Ren W, Chen G, Melillo J, Liu J. 2011a. Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J Geophys Res G02011, doi:10.1029/2010JG001393.
  72. Tian H, Melillo J, Lu C, Kicklighter D, Liu M, Ren W, Xu X, Chen G, Zhang C, Pan S, Liu J, Running S. 2011b. China’s terrestrial carbon balance: contribution of multiple global change factors. Global Biogeochemical Cycles 25, GB1007, doi:10.1029/2010GB003838.
  73. Van Aardenne J, Dentener F, Olivier J, Goldewijk CK, Lelieveld J. 2001. A 1° × 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Glob Biogeochem Cycles 15:909–28.CrossRefGoogle Scholar
  74. Wear DN. 2002. Land use. In: Wear DN, Greis JG, Eds. Southern forest resource assessment. pp. 153–174. Tech. Rep. GTR SRS-53. USDA, Forest Service, Washington, DC. http://www.srs.fs.usda.gov/sustain/report/.
  75. Woodwell GM, Mackenzie FT, Houghton RA, Apps MJ, Gorham E, Davidson EA. 1995. Will the warming speed the warming? In: Woodwell GM, MacKenzie FT, Eds. Biotic feedbacks in the global climatic system: will the warming feed the warming?. Oxford: Oxford University Press. p 393–411.Google Scholar
  76. Xu X, Tian H, Zhang C, Liu M, Ren W, Chen GS, Lu C, Bruhwiler L. 2010. Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences 7:3637–55.CrossRefGoogle Scholar
  77. Zhang C, Tian H, Chappelka A, Ren W, Chen H, Pan S, Liu M, Styers DM, Chen GS, Wang Y. 2007. Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains. Environ Pollut 149:336–47.PubMedCrossRefGoogle Scholar
  78. Zhang C, Tian H, Wang Y, Zeng T, Liu Y. 2010. Predicting response of fuel load to future changes in climate and atmospheric composition in the southern United States. For Ecol Manag 260:556–64.CrossRefGoogle Scholar
  79. Zhang C, Tian H, Chen G, Chappelka A, Xu X, Ren W, Hui D, Liu M, Lu C, Pan S, Lockaby G. 2012. Impacts of urbanization on carbon balance of the Southern United States from 1945 to 2007. Environ Pollut 164:89–101. doi:10.1016/j.envpol.2012.01.020.PubMedCrossRefGoogle Scholar
  80. Zhao M, Running SW. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–3.PubMedCrossRefGoogle Scholar
  81. Zhou XH, Weng ES, Luo YQ. 2008. Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecol Appl 18:453–66.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hanqin Tian
    • 1
    • 2
  • Guangsheng Chen
    • 1
    • 2
  • Chi Zhang
    • 1
    • 2
  • Mingliang Liu
    • 1
    • 2
  • Ge Sun
    • 3
  • Arthur Chappelka
    • 1
    • 2
  • Wei Ren
    • 1
    • 2
  • Xiaofeng Xu
    • 1
    • 2
  • Chaoqun Lu
    • 1
    • 2
  • Shufen Pan
    • 1
    • 2
  • Hua Chen
    • 4
  • Dafeng Hui
    • 5
  • Steven McNulty
    • 3
  • Graeme Lockaby
    • 1
    • 2
  • Eric Vance
    • 6
  1. 1.School of Forestry and Wildlife SciencesAuburn UniversityAuburnUSA
  2. 2.International Center for Climate and Global Change ResearchAuburn UniversityAuburnUSA
  3. 3.Eastern Forest Environmental Threat Assessment CenterUSDA Forest ServiceRaleighUSA
  4. 4.State Key Laboratory of Desert and Oasis EcologyXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina
  5. 5.Department of Biological SciencesTennessee State UniversityNashvilleUSA
  6. 6.National Council for Air and Stream Improvement (NCASI)Research Triangle ParkRaleighUSA

Personalised recommendations