, Volume 15, Issue 3, pp 387–400

Variable Responses of Lowland Tropical Forest Nutrient Status to Fertilization and Litter Manipulation

  • Emma J. Sayer
  • S. Joseph Wright
  • Edmund V. J. Tanner
  • Joseph B. Yavitt
  • Kyle E. Harms
  • Jennifer S. Powers
  • Michael Kaspari
  • Milton N. Garcia
  • Benjamin L. Turner


Predicting future impacts of anthropogenic change on tropical forests requires a clear understanding of nutrient constraints on productivity. We compared experimental fertilization and litter manipulation treatments in an old-growth lowland tropical forest to distinguish between the effects of inorganic nutrient amendments and changes in nutrient cycling via litterfall. We measured the changes in soil and litter nutrient pools, litterfall, and fine root biomass in plots fertilized with nitrogen (N), phosphorus (P), or potassium (K), and in litter addition and litter removal treatments during 7 years. Soil inorganic N and litter N increased in double-litter plots but not in N-fertilized plots. Conversely, litter P and soil pools of P and K increased in fertilized plots but not in the double-litter plots. Soil and litter pools of N and K decreased in the no-litter plots. Changes in litterfall with added nutrients or litter were only marginally significant, but fine root biomass decreased with both the litter and the K addition. Differences between the two experiments are mostly attributable to the coupled cycling of carbon and nutrients in litter. Increased nutrient inputs in litter may improve plant uptake of some nutrients compared to fertilization with similar amounts. The litter layer also appears to play a key role in nutrient retention. We discuss our findings in the context of possible impacts of anthropogenic change on tropical forests.


nutrient limitation Panama litter addition litter removal nitrogen phosphorus potassium litterfall soil nutrients fine root biomass 

Supplementary material

10021_2011_9516_MOESM1_ESM.doc (442 kb)
Supplementary material 1 (DOC 443 kb)


  1. Adams JA. 1986. Identification of heterotrophic nitrification in strongly acid larch humus. Soil Biol Biochem 18:324–39.Google Scholar
  2. Aerts R, Chapin FS. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67.CrossRefGoogle Scholar
  3. Attiwill PM, Adams MA. 1993. Nutrient cycling in forests. New Phytol 124:561–82.CrossRefGoogle Scholar
  4. Beedlow PA, Tingey DT, Phillips DL, Hogsett WE, Olszyk DM. 2004. Rising atmospheric CO2 and carbon sequestration in forests. Front Ecol Environ 2:315–22.CrossRefGoogle Scholar
  5. Bloom AJ, Chapin FS, Mooney HA. 1985. Resource limitation in plants—an economic analogy. Ann Rev Ecol Syst 16:363–92.Google Scholar
  6. Cavallaro N, McBride MB. 1984. Zinc and copper sorption and fixation by an acid soil clay: effect of selective dissolutions. Soil Sci Soc Am J 48:1050–4.CrossRefGoogle Scholar
  7. Cavelier J. 1992. Fine-root biomass and soil properties in a semideciduous and a lower montane rain forest in Panama. Plant Soil 142:187–201.CrossRefGoogle Scholar
  8. Chang S-C, Wang C-P, Feng C-M, Rees R, Hell U, Matzner E. 2007. Soil fluxes of mineral elements and dissolved organic matter following manipulation of leaf litter input in a Taiwan Chamaecyparis forest. For Ecol Manag 242:133–41.CrossRefGoogle Scholar
  9. Clark DA, Brown S, Kicklighter D, Chambers J, Thomlinson JR, Jian Ni, Holland EA. 2001. NPP in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–84.CrossRefGoogle Scholar
  10. Corre MD, Veldkamp E, Arnold J, Wright SJ. 2010. Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91:1715–29.PubMedCrossRefGoogle Scholar
  11. Davidson EA, Howarth RW. 2007. Nutrients in synergy. Nature 449:1000–1.PubMedCrossRefGoogle Scholar
  12. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1135–42.PubMedCrossRefGoogle Scholar
  13. Field CB, Chapin FS, Matson PA, Mooney HA. 1992. Responses of terrestrial ecosystems to the changing atmosphere—a resource-based approach. Ann Rev Ecol Syst 23:201–35.CrossRefGoogle Scholar
  14. Focht DD, Verstraete W. 1977. Biochemical ecology of nitrification and denitrification. Adv Microb Ecol 1:135–214.Google Scholar
  15. Fontaine S, Bardoux G, Abbadie L, Mariotti A. 2004. Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–20.CrossRefGoogle Scholar
  16. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JF, Townsend AR, Vörösmarty CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.CrossRefGoogle Scholar
  17. Gosz JR, Likens GE, Bormann FH. 1976. Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook Forest. Oecologia 22:305–20.CrossRefGoogle Scholar
  18. Grubb PJ. 1989. The role of mineral nutrients in the tropics: a plant ecologist’s view. In: Proctor J, Ed. Mineral nutrients in tropical forest and savanna ecosystems. Oxford: Blackwell. p 417–39.Google Scholar
  19. Güsewell S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytol 162:243–66.CrossRefGoogle Scholar
  20. Hall SJ, Matson PA. 2003. Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecol Monogr 73:107–29.CrossRefGoogle Scholar
  21. Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken ME, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE. 2011. Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–62.PubMedCrossRefGoogle Scholar
  22. Herrera R, Merida T, Stark NM, Jordan CF. 1978. Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften 65:208–9.CrossRefGoogle Scholar
  23. Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ. 2011. Long-term change in the nitrogen cycle of tropical forests. Science 334:664–6.PubMedCrossRefGoogle Scholar
  24. Hobbie SE, Vitousek PM. 2000. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–77.CrossRefGoogle Scholar
  25. Ingestad T. 1974. Towards optimum fertilization. Ambio 3:49–54.Google Scholar
  26. Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43.PubMedGoogle Scholar
  27. Koehler B, Corre MD, Veldkamp E, Wullaert H, Wright SJ. 2009. Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. Glob Change Biol 15:2049–66.CrossRefGoogle Scholar
  28. LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–9.PubMedCrossRefGoogle Scholar
  29. Leigh EG. 1999. Tropical forest ecology. Oxford: Oxford University Press. p 245.Google Scholar
  30. Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Ryan DF, Lovett GM, Fahey T, Reiners WA. 1994. The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry 25:61–125.CrossRefGoogle Scholar
  31. Liu L, King JS, Booker FL, Giardina CP, Allen HL, Hu S. 2009. Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study. Glob Change Biol 15:441–53.CrossRefGoogle Scholar
  32. Lodge DJ, McDowell WH, McSwiney CP. 1994. The importance of nutrient pulses in tropical forests. Trends Ecol Evol 9:384–7.PubMedCrossRefGoogle Scholar
  33. Lodge DJ, McDowell WH, Macy J, Ward SK, Leisso R, Claudio-Campos K, Kühnert K. 2008. Distribution and role of mat-forming saprobic basidiomycetes in a tropical forest. In: Boddy L, Frankland JC, van West P, Eds. Ecology of saprotrophic basidiomycetes. London: Academic Press. p 197–209.CrossRefGoogle Scholar
  34. Loladze I. 2002. Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends Ecol Evol 17:457–61.CrossRefGoogle Scholar
  35. Manzoni S, Trofymow JA, Jackson RB, Porporato A. 2010. Stoichiometric controls on dynamics of carbon, nitrogen, and phosphorus in decomposing litter. Ecol Monogr 80:89–106.CrossRefGoogle Scholar
  36. Marschner H. 1993. Zinc uptake from soils. In: Robson AD, Ed. Zinc in soils and plants. Dordrecht: Kluwer. p 59–77.CrossRefGoogle Scholar
  37. Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–65.CrossRefGoogle Scholar
  38. Okin GS, Mahowald N, Chadwick OA, Artaxo P. 2004. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18:GB2005. doi:10.1029/2003GB002145.CrossRefGoogle Scholar
  39. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–72.PubMedCrossRefGoogle Scholar
  40. Ostertag R. 2010. Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant Soil 334:85–98.CrossRefGoogle Scholar
  41. Ostertag R, Hobbie SE. 1999. Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia 121:564–73.CrossRefGoogle Scholar
  42. Paoli GD, Curran LM, Zak DR. 2005. Phosphorus efficiency of Bornean rain forest productivity: evidence against the unimodal efficiency hypothesis. Ecology 86:1548–61.CrossRefGoogle Scholar
  43. Parker GG. 1983. Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133.CrossRefGoogle Scholar
  44. Pedersen H, Dunkin KA, Firestone MK. 1999. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques. Biogeochemistry 44:125–50.Google Scholar
  45. Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P. 2006. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12:470–6.CrossRefGoogle Scholar
  46. Pinheiro JC, Bates DM. 2000. Mixed-effects models in S and S-PLUS. New York (NY): Springer.CrossRefGoogle Scholar
  47. Qualls RG, Haines BL, Swank WT. 1991. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72:254–66.CrossRefGoogle Scholar
  48. R Development Core Team. 2010. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  49. Reddy KJ, Wang L, Gloss SP. 1995. Solubility and mobility of copper, zinc and lead in acidic environments. Plant Soil 171:53–8.CrossRefGoogle Scholar
  50. Robertson GP, Vitousek PM. 1981. Nitrification potentials in primary and secondary succession. Ecology 62:376–86.CrossRefGoogle Scholar
  51. Sanchez PA. 1976. Properties and management of soils in the tropics. New York: Wiley. p 630.Google Scholar
  52. Sayer EJ. 2006. Using experimental litter manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31.PubMedCrossRefGoogle Scholar
  53. Sayer EJ, Tanner EVJ. 2010. Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. J Ecol 98:1052–62.CrossRefGoogle Scholar
  54. Sayer EJ, Tanner EVJ, Cheesman AW. 2006a. Increased litterfall changes fine root distribution in a moist tropical forest. Plant Soil 281:5–13.CrossRefGoogle Scholar
  55. Sayer EJ, Tanner EVJ, Lacey AL. 2006b. Litter quantity affects early-stage decomposition and meso-arthropod abundance in a moist tropical forest. For Ecol Manag 229:285–93.CrossRefGoogle Scholar
  56. Sayer EJ, Powers JS, Tanner EVJ. 2007. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS ONE e1299, doi:10.1371/journal.pone.0001299.
  57. Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ. 2011. Soil carbon release enhanced by increased tropical forest litterfall. Nature Clim Change 1:304–7.CrossRefGoogle Scholar
  58. Schimel JP, Firestone MK, Killham KS. 1984. Identification of heterotrophic nitrification in a Sierran forest soil. Appl Environ Microbiol 48:802–6.PubMedGoogle Scholar
  59. Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH. 2008. Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–64.PubMedGoogle Scholar
  60. Stark NM, Jordan CF. 1978. Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59:434–7.CrossRefGoogle Scholar
  61. Tobón C, Sevink J, Verstraten JM. 2004. Litterflow chemistry and nutrient uptake from the forest floor in northwest Amazonian forest ecosystems. Biogeochemistry 69:315–39.CrossRefGoogle Scholar
  62. Townsend AR, Cleveland CC, Asner GP, Bustamante MMC. 2007. Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–18.PubMedCrossRefGoogle Scholar
  63. Townsend AR, Asner GP, Cleveland CC. 2008. The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–31.PubMedCrossRefGoogle Scholar
  64. Townsend AR, Cleveland CC, Houlton BZ. 2011. Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9:9–17.CrossRefGoogle Scholar
  65. Tripler CE, Causal SS, Likens GE, Walter MT. 2006. Patterns in potassium dynamics in forest ecosystems. Ecol Lett 9:451–66.PubMedCrossRefGoogle Scholar
  66. Turner BL, Engelbrecht BMJ. 2011. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103:297–315.CrossRefGoogle Scholar
  67. Tyler G. 2005. Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest. For Ecol Manag 206:167–77.CrossRefGoogle Scholar
  68. Vasconcelos SS, Zarin DJ, Machado Araújo M, Rangel-Vasconcelos LGT, Reis de Carvalho CJ, Staudhammer CL, Oliveira FA. 2008. Effects of seasonality, litter removal and dry-season irrigation on litterfall quantity and quality in eastern Amazonian forest regrowth, Brazil. J Trop Ecol 24:27–38.CrossRefGoogle Scholar
  69. Vincent AG, Turner BL, Tanner EVJ. 2010. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. Eur J Soil Sci 61:48–57.CrossRefGoogle Scholar
  70. Vitousek PM. 1982. Nutrient cycling and nutrient use efficiency. Am Nat 119:553–72.CrossRefGoogle Scholar
  71. Vitousek PM. 1984. Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65:285–98.CrossRefGoogle Scholar
  72. Vitousek PM, Sanford RL. 1986. Nutrient cycling in moist tropical forest. Ann Rev Ecol Syst 17:137–67.CrossRefGoogle Scholar
  73. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–50.Google Scholar
  74. Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15.PubMedCrossRefGoogle Scholar
  75. Walker TW, Syers JK. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1–19.CrossRefGoogle Scholar
  76. Witkamp M. 1971. Soils as components of ecosystems. Ann Rev Ecol Syst 2:85–110.CrossRefGoogle Scholar
  77. Wood TE, Lawrence D, Clark DA, Chazdon RL. 2009. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 90:109–21.PubMedCrossRefGoogle Scholar
  78. Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD. 2011. Potassium, phosphorus or nitrogen limit root allocation, tree growth and litter production in a lowland tropical forest. Ecology 92:1616–25.PubMedCrossRefGoogle Scholar
  79. Wullaert H, Homeier J, Valarezo C, Wilcke W. 2010. Response of the N and P cycles of an old-growth montane forest in Ecuador to experimental low-level N and P amendments. For Ecol Manag 260:1434–45.CrossRefGoogle Scholar
  80. Yavitt JB, Wieder RK. 1988. Nitrogen, phosphorus and sulfur properties of some forest soils on Barro Colorado Island, Panama. Biotropica 20:2–10.CrossRefGoogle Scholar
  81. Yavitt JB, Harms KE, Garcia MN, Wright SJ, He F, Jason MJ. 2009. Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Aust J Soil Res 47:674–87.CrossRefGoogle Scholar
  82. Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ. 2011. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecol 36:433–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Emma J. Sayer
    • 1
    • 2
    • 3
  • S. Joseph Wright
    • 2
  • Edmund V. J. Tanner
    • 3
  • Joseph B. Yavitt
    • 4
  • Kyle E. Harms
    • 2
    • 5
  • Jennifer S. Powers
    • 6
  • Michael Kaspari
    • 7
  • Milton N. Garcia
    • 2
  • Benjamin L. Turner
    • 2
  1. 1.Centre for Ecology and HydrologyWallingfordUK
  2. 2.Smithsonian Tropical Research InstituteAncon, BalboaRepublic of Panama
  3. 3.Department of Plant SciencesUniversity of CambridgeCambridgeUK
  4. 4.Department of Natural ResourcesCornell UniversityIthacaUSA
  5. 5.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  6. 6.Departments of Ecology, Evolution, & Behavior and Plant BiologyUniversity of MinnesotaSt. PaulUSA
  7. 7.Department of ZoologyUniversity of OklahomaNormanUSA

Personalised recommendations