Advertisement

Ecosystems

, Volume 15, Issue 2, pp 213–229 | Cite as

The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland

  • Jonathan A. O’DonnellEmail author
  • M. Torre Jorgenson
  • Jennifer W. Harden
  • A. David McGuire
  • Mikhail Z. Kanevskiy
  • Kimberly P. Wickland
Article

Abstract

Recent warming at high-latitudes has accelerated permafrost thaw in northern peatlands, and thaw can have profound effects on local hydrology and ecosystem carbon balance. To assess the impact of permafrost thaw on soil organic carbon (OC) dynamics, we measured soil hydrologic and thermal dynamics and soil OC stocks across a collapse-scar bog chronosequence in interior Alaska. We observed dramatic changes in the distribution of soil water associated with thawing of ice-rich frozen peat. The impoundment of warm water in collapse-scar bogs initiated talik formation and the lateral expansion of bogs over time. On average, Permafrost Plateaus stored 137 ± 37 kg C m−2, whereas OC storage in Young Bogs and Old Bogs averaged 84 ± 13 kg C m−2. Based on our reconstructions, the accumulation of OC in near-surface bog peat continued for nearly 1,000 years following permafrost thaw, at which point accumulation rates slowed. Rapid decomposition of thawed forest peat reduced deep OC stocks by nearly half during the first 100 years following thaw. Using a simple mass-balance model, we show that accumulation rates at the bog surface were not sufficient to balance deep OC losses, resulting in a net loss of OC from the entire peat column. An uncertainty analysis also revealed that the magnitude and timing of soil OC loss from thawed forest peat depends substantially on variation in OC input rates to bog peat and variation in decay constants for shallow and deep OC stocks. These findings suggest that permafrost thaw and the subsequent release of OC from thawed peat will likely reduce the strength of northern permafrost-affected peatlands as a carbon dioxide sink, and consequently, will likely accelerate rates of atmospheric warming.

Keywords

peatlands soil carbon permafrost thermokarst Alaska climate change boreal 

Notes

Acknowledgments

Many thanks to Pedro Rodriguez for laboratory assistance, Kristen Manies for help with data processing, Trish Miller for help in the field, and Tom Douglas for sharing laboratory space. We would like to thank Stephanie Ewing, Kris Johnson, Vladimir Romanovsky, Eran Hood, and two anonymous reviewers for their valuable comments on earlier versions of this manuscript. Koyukuk NWR helped with logistical support. Funding and support for J. O’Donnell was provided by the National Science Foundation collaborative Grant EAR-0630249, the Institute of Northern Engineering at the University of Alaska Fairbanks, and the U.S. Geological Survey Global Change program.

References

  1. Beilman DW, Vitt DH, Halsey LA. 2001. Localized permafrost peatlands in western Canada: definitions, distribution, and degradation. Arct Antarct Alp Res 33:70–7.CrossRefGoogle Scholar
  2. Blodau C. 2002. Carbon cycling in peatlands—a review of processes and controls. Environ Rev 10:111–34.CrossRefGoogle Scholar
  3. Burn CR. 2005. Lake-bottom thermal regimes, western Arctic coast, Canada. Permafrost Periglac Process 16:355–67.CrossRefGoogle Scholar
  4. Camill P. 1999. Patterns of boreal permafrost peatland vegetation across environmental gradients sensitive to climate warming. Can J Bot 77:721–33.Google Scholar
  5. Camill P. 2005. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim Change 68:135–52.CrossRefGoogle Scholar
  6. Christensen TR, Johansson T, Akerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH. 2004. Thawing of sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31. doi: 10.1029/2003GL018680.
  7. Clymo RS. 1984. The limits to peat bog growth. Philos Trans Roy Soc Lond B 303:605–54.CrossRefGoogle Scholar
  8. Clymo RS, Turunen J, Tolonen K. 1998. Carbon accumulation in peatlands. Oikos 81:368–88.CrossRefGoogle Scholar
  9. Delisle G. 2007. Near-surface permafrost degradation: how severe during the 21st century? Geophys Res Lett 34. doi: 10.1029/2007GL029323.
  10. Dise NB. 2009. Peatland response to global change. Science 326:810–11.PubMedCrossRefGoogle Scholar
  11. Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callahan TV, Aerts R. 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460. doi: 10.1038/nature08216.
  12. Euskirchen ES, McGuire AD, Kicklighter DW, Zhuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV. 2006. Importance of recent shifts in soil thermal dynamics on growing season length, productivity and carbon sequestration in terrestrial high-latitude ecosystems. Glob Change Biol 12:731–50.CrossRefGoogle Scholar
  13. French H, Shur Y. 2010. The principles of cryostratigraphy. Earth Sci Rev 101:190–206.CrossRefGoogle Scholar
  14. Frolking S, Roulet NT. 2007. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob Change Biol 13:1079–88.CrossRefGoogle Scholar
  15. Frolking S, Roulet NT, Moore TR, Richard PJH, Lavoie M, Muller SD. 2001. Modeling northern peatland decomposition and peat accumulation. Ecosystems 4:479–98.CrossRefGoogle Scholar
  16. Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A, Talbot J, Richard PJH. 2010. A new model of Holocene peatland primary production, decomposition, water balance, and peat accumulation. Earth Syst Dyn 1:1–21.CrossRefGoogle Scholar
  17. Gaudinski JB, Trumbore SE, Davidson EA, Zheng S. 2000. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69.CrossRefGoogle Scholar
  18. Grosse G, Harden J, Turetsky M, McGuire AD, Camill P, Tarnocai C, Frolking S, Schuur EAG, Jorgenson T, Marchenk S, Romanovsky V, Wickland K, French N, Waldrop M, Bourgeau-Chavez, Striegl RG. 2011. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J Geophys Res-Biogeosci 116:G00K06. doi:  10.1029/2010JG001507.
  19. Halsey LA, Vitt DH, Zoltai SC. 1995. Disequilibrium response of permafrost in boreal continental western Canada to climate change. Clim Change 30:57–73.CrossRefGoogle Scholar
  20. Harden JW, Sundquist ET, Stallard RF, Mark RK. 1992. Dynamics of soil carbon deglaciation of the Laurentide Ice Sheet. Science 258:1921–4.PubMedCrossRefGoogle Scholar
  21. Harden JW, O’Neill KP, Trumbore SE, Veldhuis H, Stocks BJ. 1997. Moss and soil contributions to annual net carbon flux of a maturing boreal forest. J Geophys Res 102:28805–16.CrossRefGoogle Scholar
  22. Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES. 2000. The role of fire in the boreal carbon budget. Glob Change Biol 6(Suppl. 1):174–184.CrossRefGoogle Scholar
  23. Hayes DJ, McGuire AD, Kicklighter DW, Gurney KR, Burnside TJ, Melillo JM. 2011. Is the northern high latitude land-based CO2 sink weakening? Global Biogeochem Cycles 25:GB3018. doi:  2010GB003813.
  24. Hugelius G, Kuhry P. 2009. Landscape partitioning and environmental gradient analysis of soil organic carbon in a permafrost environment. Glob Biogeochem Cycles 23:GB3006. doi: 10.1029/2008GB003419.CrossRefGoogle Scholar
  25. Ise T, Dunn AL, Wofsy SC, Moorcroft PR. 2008. High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci 1:763–6.CrossRefGoogle Scholar
  26. Jorgenson MT, Osterkamp TE. 2005. Response of boreal ecosystems to varying modes of permafrost degradation. Can J For Res 35:2100–11.CrossRefGoogle Scholar
  27. Jorgenson MT, Racine CH, Walters JC, Osterkamp TE. 2001. Permafrost degradation and ecological changes associated with a warming climate in Central Alaska. Clim Change 48:551–79.CrossRefGoogle Scholar
  28. Jorgenson MT, Shur YL, Osterkamp TE, George T. 2007. Nature and extent of permafrost degradation in the discontinuous permafrost zone of Alaska. In: Proceedings of seventh international conference on global change: connection to the Arctic (GCCA-7). International Arctic Research Center, University of Alaska Fairbanks.Google Scholar
  29. Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EAG, Kanevskiy M, Marchenko S. 2010. Resilience and vulnerability of permafrost to climate change. Can J For Res 40:1219–36.CrossRefGoogle Scholar
  30. Kane ES, Valentine DW, Michaelson GJ, Fox JD, Ping C-L. 2006. Controls over pathways of carbon efflux from soils along climate and black spruce productivity gradients in interior Alaska. Soil Biol Biochem 38:1438–50.CrossRefGoogle Scholar
  31. Kanevskiy M, Shur Y, Fortier D, Jorgenson MT, Stephani E. 2011. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quat Res. doi: 10.1016/j.yqres.2010.12.003.
  32. Lachenbruch AH, Brewer MC, Greene GW, Marshall BV. 1962. Temperatures in permafrost. In: Herzfeld CM, Ed. Temperature: its measurement and control in science and industry, Vol 3, part 1. New York: Reinhold. p 791–803.Google Scholar
  33. Lawrence DM, Slater AG, Romanovsky VE, Nicolsky DJ. 2008. Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J Geophys Res 113:F02011. doi: 10.1029/2007JF000883.CrossRefGoogle Scholar
  34. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G. 2008. Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–91.CrossRefGoogle Scholar
  35. Ling F, Zhang T. 2003. Numerical simulation of permafrost thermal regime and talik development under shallow lakes on the Alaskan Arctic Coastal Plain. J Geophys Res 108. doi: 10.1029/2002JD003014.
  36. Ling F, Zhang T. 2004. Modeling study of talik freeze-up and permafrost response under drained thaw lakes on the Alaskan Arctic Coastal Plain. J Geophys Res 109. doi: 10/1029/2003JD003886.
  37. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N. 2009. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–55.CrossRefGoogle Scholar
  38. McGuire AD, Hayes DJ, Kicklighter DW, Manizza M, Zhuang Q, Chen M, Follows MJ, Gurney KR, McClelland JW, Melillo JM, Peterson BJ, Prinn R. 2010. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006. Tellus 62B:455–74.Google Scholar
  39. Myers-Smith IH, Harden JW, Wilmking M, Fuller CC, McGuire AD, Chapin FSIII. 2008. Wetland succession in a permafrost collapse: interactions between fire and thermokarst. Biogeosciences 5:1273–86.CrossRefGoogle Scholar
  40. Nilsson M, Klarqvist M, Bohlin E, Possnert G. 2001. Variation in 14C age of macrofossils and different fractions of minute peat samples dated by AMS. Holocene 11:579–86.CrossRefGoogle Scholar
  41. O’Donnell JA, Harden JW, McGuire AD, Kanevskiy MZ, Jorgenson MT, Xu X. 2011. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Glob Change Biol 17:1461–74.CrossRefGoogle Scholar
  42. O’Neill KP, Kasischke ES, Richter DD. 2003. Seasonal and decadal patterns of soil carbon uptake and emission along an age sequence of burned black spruce stands in interior Alaska. J Geophys Res 108. doi: 10.1029/2001JD000443.
  43. Olsson I. 1986. Radiometric methods. In: Berglund B, Ed. Handbook of Holocene paleoecology and paleohydrology. New York: Wiley. p 273–312.Google Scholar
  44. Payette S, Delwaide A, Caccianiga M, Beauchemin M. 2004. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys Res Lett 31. doi: 10.1029/2004GL020358.
  45. Rivkina E, Friedmann E, McKay C, Gilichinsky D. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3.PubMedCrossRefGoogle Scholar
  46. Robinson SD, Moore TR. 1999. Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwest Canada. Global Biogeochem Cycles 13:591–601.CrossRefGoogle Scholar
  47. Robinson SD, Moore TR. 2000. The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, Canada. Arct Antarct Alp Res 32:155–66.CrossRefGoogle Scholar
  48. Romanovsky VE, Osterkamp TE. 2000. Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafrost Periglac Process 11:219–39.CrossRefGoogle Scholar
  49. Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–14.CrossRefGoogle Scholar
  50. Shur YL, Jorgenson MT. 1998. Cryostructure development on the floodplain of the Colville River Delta, Northern Alaska. In: PERMAFROST-seventh international conference (proceedings). Yellowknife, Canada. Collection Nordicana 1998. pp 993–9.Google Scholar
  51. Smith LC, MacDonald GM, Velichko AA, Beilman DW, Borisova OK, Frey KE, Kremenetski KV, Sheng Y. 2004. Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 303. doi: 10.1126/science.1090553.
  52. Soil Classification Working Group. 1998. The Canadian system of soil classification. Ottawa (ON): NRC Canada Research Press. 187 pp.Google Scholar
  53. Soil Survey Staff. 1998. Keys to soil taxonomy. Blacksburg (VA): Pocahontas Press, Inc. 599 pp.Google Scholar
  54. Southon J, Santos G, Druffel-Rodriguez K, Druffel E, Trumbore S, Xu X, Griffin S, Ali S, Mazon M. 2004. The Keck Carbon Cycle AMS laboratory, University of California Irvine: initial operation and background surprise. Radiocarbon 46:41–9.Google Scholar
  55. Stuiver M, Polach HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19:355–63.Google Scholar
  56. Tarnocai C. 2006. The effect of climate change on carbon in Canadian peatlands. Global Planet Change 53:222–32.CrossRefGoogle Scholar
  57. Tarnocai, C., Ping C-L, Kimble J. 2007. Carbon Cycles in the Permafrost region of North America. King AW, Dilling L, Zimmerman GP, Fairman DM, Houghton RA, Marland G, Rose AZ, Wilbanks TJ, Eds. The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Asheville (NC): National Oceanic and Atmospheric Administration, National Climatic Data Center. pp. 127–38.Google Scholar
  58. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23. doi: 1029/2008GB003327.
  59. Thie J. 1974. Distribution of thawing permafrost in the southern part of the discontinuous permafrost zone in Manitoba. Arctic 27:189–200.Google Scholar
  60. Trumbore SE. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411.CrossRefGoogle Scholar
  61. Trumbore SE, Harden JW. 1997. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. J Geophys Res 102:28817–30.CrossRefGoogle Scholar
  62. Turetsky M, Wieder K, Halsey L, Vitt D. 2002a. Current disturbance and the diminishing peatland carbon sink. Geophys Res Lett 29. doi: 10.1029/2001GL014000.
  63. Turetsky MR, Wieder RK, Vitt DH. 2002b. Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–12.CrossRefGoogle Scholar
  64. Turetsky MR, Wieder RK, Vitt DH, Evans RJ, Scott KD. 2007. The disappearance of relict permafrost in boreal North America: effects of peatland carbon storage and fluxes. Glob Change Biol 13:1922–34.CrossRefGoogle Scholar
  65. Van Cleve K, Dyrness CT, Viereck LA, Fox J, Chapin FSIII, Oechel W. 1983. Taiga ecosystems in interior Alaska. Bioscience 33:39–44.CrossRefGoogle Scholar
  66. Waddington JM, Roulet NT. 1997. Groundwater flow and dissolved carbon movement in a boreal peatland. J Hydrol 191:122–38.CrossRefGoogle Scholar
  67. Waldrop MP, Wickland KP, White RIII, Berhe AA, Harden JW, Romanovsky VE. 2010. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob Change Biol 16:2543–54.Google Scholar
  68. Wang C, Bond-Lamberty B, Gower ST. 2003. Carbon distribution of a well- and poorly-drained black spruce chronosequence. Glob Change Biol 9:1066–79.CrossRefGoogle Scholar
  69. West JJ, Plug LJ. 2008. Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J Geophys Res 113. doi: 10.1029/2006JF000696.
  70. Wickland KP, Striegl RG, Neff JC, Sachs T. 2006. Effects of permafrost melting on CO2 and CH4 exchange of a poorly drained black spruce lowland. J Geophys Res 111. doi: 10.1029/2005JG000099.
  71. Xu X, Trumbore SE, Zheng S, Southon JR, McDuffee KE, Luttgen M, Liu JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nucl Instrum Methods Phys Res B 259:320–9.CrossRefGoogle Scholar
  72. Yoshikawa K, Hinzman LD. 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglac Process 14:151–60.CrossRefGoogle Scholar
  73. Zhuang Q, McGuire AD, O’Neill KP, Harden JW, Romanovsky VE, Yarie J. 2002. J Geophys Res Atmos 108, 8147. doi: 10.1029/2001JD001244.
  74. Zoltai SC. 1993. Cyclic development of permafrost in the peatlands of Northwestern Alberta, Canada. Arctic Alpine Res 25:240–6.CrossRefGoogle Scholar
  75. Zoltai SC, Vitt DH. 1990. Holocene climatic change and the distribution of peatlands in western interior Canada. Quat Res 33:231–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2011

Authors and Affiliations

  • Jonathan A. O’Donnell
    • 1
    Email author
  • M. Torre Jorgenson
    • 2
  • Jennifer W. Harden
    • 3
  • A. David McGuire
    • 4
  • Mikhail Z. Kanevskiy
    • 5
  • Kimberly P. Wickland
    • 1
  1. 1.U.S. Geological SurveyBoulderUSA
  2. 2.Alaska EcoscienceFairbanksUSA
  3. 3.U.S. Geological SurveyMenlo ParkUSA
  4. 4.U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksUSA
  5. 5.Institute of Northern EngineeringUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations