Advertisement

Ecosystems

, Volume 14, Issue 7, pp 1055–1065 | Cite as

The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site

  • D. Blok
  • M. M. P. D. Heijmans
  • G. Schaepman-Strub
  • J. van Ruijven
  • F. J. W. Parmentier
  • T. C. Maximov
  • F. Berendse
Article

Abstract

Arctic tundra vegetation composition is expected to undergo rapid changes during the coming decades because of changes in climate. Higher air temperatures generally favor growth of deciduous shrubs, often at the cost of moss growth. Mosses are considered to be very important to critical tundra ecosystem processes involved in water and energy exchange, but very little empirical data are available. Here, we studied the effect of experimental moss removal on both understory evapotranspiration and ground heat flux in plots with either a thin or a dense low shrub canopy in a tundra site with continuous permafrost in Northeast Siberia. Understory evapotranspiration increased with removal of the green moss layer, suggesting that most of the understory evapotranspiration originated from the organic soil layer underlying the green moss layer. Ground heat flux partitioning also increased with green moss removal indicating the strong insulating effect of moss. No significant effect of shrub canopy density on understory evapotranspiration was measured, but ground heat flux partitioning was reduced by a denser shrub canopy. In summary, our results show that mosses may exert strong controls on understory water and heat fluxes. Changes in moss or shrub cover may have important consequences for summer permafrost thaw and concomitant soil carbon release in Arctic tundra ecosystems.

Keywords

moss evaporation ground heat flux shrub permafrost tundra Arctic climate change 

Notes

Acknowledgments

This study is partly financed by the Darwin Center for Biogeosciences and the Wageningen Institute for Environment and Climate Research (WIMEK). We are grateful to the staff of the BioGeoChemical Cycles of Permafrost Ecosystems Lab in Yakutsk for logistic support and to the staff of the Kytalyk State Resource Reservation for their permission and hospitality to conduct research in the Kytalyk reserve. We thank Roman Sofronov, Elena Ivanova and Lena Poryadina for help with plant species identification. We thank Annelein Meisner and both referees for their helpful comments on the manuscript.

References

  1. ACIA. 2004. Future climate change: modelling and scenarios for the Arctic. In: Kattsov VM, Källén E, Eds. Arctic climate impact assessment: impacts of a warming arctic. Cambridge: Cambridge University Press. p 99–150.Google Scholar
  2. Admiral SW, Lafleur PM. 2007. Modelling of latent heat partitioning at a bog peatland. Agric For Meteorol 144:213–29.CrossRefGoogle Scholar
  3. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T. 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. In: Fitter AH, Raffaelli DG, Eds. Advances in ecological research. New York: Academic Press. p 113–75.Google Scholar
  4. Bates D, Maechler M. 2009. Lme4: linear mixed-effects models using S4 classes. R package version 0.99. http://CRAN.R-project.org/package=lme4.
  5. Beringer J, Lynch AH, Chapin FSIII, Mack M, Bonan GB. 2001. The representation of arctic soils in the land surface model: the importance of mosses. J Clim 14:3324.CrossRefGoogle Scholar
  6. Beringer J, Chapin FSIII, Thompson CC, McGuire AD. 2005. Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric For Meteorol 131:143–61.CrossRefGoogle Scholar
  7. Blok D, Heijmans MMPD, Schaepman-Strub G, Kononov AV, Maximov TC, Berendse F. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biol 16:1296–305.CrossRefGoogle Scholar
  8. Blok D, Sass-Klaassen U, Schaepman-Strub G, Heijmans MMPD, Sauren P, Berendse F. 2011. What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8:1169–79.CrossRefGoogle Scholar
  9. Boike J, Wille C, Abnizova A. 2008. Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113:G03025.CrossRefGoogle Scholar
  10. Busby JR, Bliss LC, Hamilton CD. 1978. Microclimate control of growth rates and habitats of the Boreal Forest Mosses, Tomenthypnum nitens and Hylocomium splendens. Ecol Monogr 48:95–110.CrossRefGoogle Scholar
  11. Chapin FSIII, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711.CrossRefGoogle Scholar
  12. Chapin FSIII, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA, Welker JM. 2005. Role of land-surface changes in arctic summer warming. Science 310:657–60.PubMedCrossRefGoogle Scholar
  13. Crawley MJ. 2007. The R book. Chichester: Wiley.CrossRefGoogle Scholar
  14. Douma JC, Van Wijk MT, Lang SI, Shaver GR. 2007. The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties. Plant Cell Environ 30:1205.PubMedCrossRefGoogle Scholar
  15. Epstein HE, Calef MP, Walker MD, Chapin FSIII, Starfield AM. 2004. Detecting changes in arctic tundra plant communities in response to warming over decadal time scales. Global Change Biol 10:1325–34.CrossRefGoogle Scholar
  16. Eugster W, McFadden JP, Chapin FSIII. 1997. A comparative approach to regional variation in surface fluxes using mobile eddy correlation towers. Boundary-Layer Meteorol 85:293–307.CrossRefGoogle Scholar
  17. Eugster W, Rouse WR, Pielke RA Sr, McFadden JP, Baldocchi DD, Kittel TGF, Chapin FSIII, Liston GE, Vidale PL, Vaganov E, Chambers S. 2000. Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biol 6:84–115.CrossRefGoogle Scholar
  18. Forbes BC, Fauria MM, Zetterberg P. 2010. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biol 16:1542–54.CrossRefGoogle Scholar
  19. Gornall J, Jónsdóttir I, Woodin S, Van der Wal R. 2007. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–41.PubMedCrossRefGoogle Scholar
  20. Gornall JL, Woodin SJ, Jónsdóttir IS, van der Wal R. 2011. Balancing positive and negative plant interactions: how mosses structure vascular plant communities. Oecologia 166(3):769–782.PubMedCrossRefGoogle Scholar
  21. Heijmans MMPD, Arp WJ, Chapin FSIII. 2004a. Carbon dioxide and water vapour exchange from understory species in boreal forest. Agric For Meteorol 123:135–47.CrossRefGoogle Scholar
  22. Heijmans MMPD, Arp WJ, Chapin FS,III. 2004b. Controls on moss evaporation in a boreal black spruce forest. Global Biogeochem Cycles 18:GB2004.CrossRefGoogle Scholar
  23. Hobbie SE, Chapin FSIII. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79:1526–44.Google Scholar
  24. Hobbie SE, Shevtsova A, Chapin FSIII. 1999. Plant responses to species removal and experimental warming in Alaskan Tussock Tundra. Oikos 84:417–34.CrossRefGoogle Scholar
  25. Hollingsworth TN, Schuur EAG, Chapin FSIII, Walker MD. 2008. Plant community composition as a predictor of regional soil carbon storage in Alaskan boreal black spruce ecosystems. Ecosystems 11:629–42.CrossRefGoogle Scholar
  26. IPCC. 2007. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, p 996.Google Scholar
  27. Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P. 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–53.CrossRefGoogle Scholar
  28. Lafleur PM. 1990. Evapotranspiration from sedge-dominated wetland surfaces. Aquat Bot 37:341–53.CrossRefGoogle Scholar
  29. Lafleur PM, Schreader CP. 1994. Water loss from the floor of a Subarctic forest. Arctic Alpine Res 26:152–8.CrossRefGoogle Scholar
  30. Lafleur PM, Rouse WR, Carlson DW. 1992. Energy balance differences and hydrologic impacts across the northern treeline. Int J Climatol 12:193–203.CrossRefGoogle Scholar
  31. Lindo Z, Gonzalez A. 2010. The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13:612–27.CrossRefGoogle Scholar
  32. Man R, Kayahara GJ, Rice JA, MacDonald GB. 2008. Eleven-year responses of a boreal mixedwood stand to partial harvesting: light, vegetation, and regeneration dynamics. For Ecol Manag 255:697–706.CrossRefGoogle Scholar
  33. McFadden JP, Chapin FSIII, Hollinger DY. 1998. Subgrid-scale variability in the surface energy balance of Arctic tundra. J Geophys Res 103:947.CrossRefGoogle Scholar
  34. McFadden JP, Eugster W, Chapin FSIII. 2003. A regional study of the controls on water vapor and CO2 exchange in Arctic tundra. Ecology 84:2762–76.CrossRefGoogle Scholar
  35. Murray KJ, Tenhunen JD, Nowak RS. 1993. Photoinhibition as a control on photosynthesis and production of Sphagnum mosses. Oecologia 96:200–7.CrossRefGoogle Scholar
  36. O’Donnell JA, Romanovsky VE, Harden JW, McGuire AD. 2009. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska. Soil Sci 174:646–51.CrossRefGoogle Scholar
  37. Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O. 2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biol 15:2681–93.CrossRefGoogle Scholar
  38. R. 2008. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.Google Scholar
  39. Rocha AV, Shaver GR. 2011. Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity. Global Change Biol. doi: 10.1111/j.1365-2486.2011.02441.x
  40. Rogers RR, Yau MK. 1989. A short course in cloud physics. Woburn (MA): Butterworth-Heinemann.Google Scholar
  41. Shaver GR, Chapin FSIII. 1991. Production: biomass relationships and element cycling in contrasting Arctic vegetation types. Ecol Monogr 61:1–31.CrossRefGoogle Scholar
  42. Sturm M, Douglas T, Racine C, Liston GE. 2005. Changing snow and shrub conditions affect albedo with global implications. J Geophys Res 110:G01004.01001–13.CrossRefGoogle Scholar
  43. Tape K, Sturm M, Racine C. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology 12:686–702.CrossRefGoogle Scholar
  44. van der Molen MK, van Huissteden J, Parmentier FJW, Petrescu AMR, Dolman AJ, Maximov TC, Kononov AV, Karsanaev SV, Suzdalov DA. 2007. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4:985–1003.CrossRefGoogle Scholar
  45. van der Wal R, Brooker RW. 2004. Mosses mediate grazer impacts on grass abundance in arctic ecosystems. Funct Ecol 18:77–86.CrossRefGoogle Scholar
  46. van der Wal R, Pearce ISK, Brooker RW. 2005. Mosses and the struggle for light in a nitrogen-polluted world. Oecologia 142:159–68.PubMedCrossRefGoogle Scholar
  47. Wahren C-HA, Walker MD, Bret-Harte MS. 2005. Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Global Change Biology 11:537–52.CrossRefGoogle Scholar
  48. Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA. 2005. The Circumpolar Arctic Vegetation Map. Journal of Vegetation Science 16:267–82.CrossRefGoogle Scholar
  49. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jonsdottir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland O, Turner PL, Tweedie CE, Webber PJ, Wookey PA. 2006. Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–6.PubMedCrossRefGoogle Scholar
  50. Wu J, Kutzbach L, Jager D, Wille C, Wilmking M. 2010. Evapotranspiration dynamics in a boreal peatland and its impact on the water and energy balance. J Geophys Res 115:G04038.CrossRefGoogle Scholar
  51. Zimov SA, Chuprynin VI, Oreshko AP, Chapin FSIII, Reynolds JF, Chapin MC. 1995. Steppe-tundra transition—a herbivore-driven biome shift at the end of the Pleistocene. American Naturalist 146:765–94.CrossRefGoogle Scholar
  52. Zimov SA, Schuur EAG, Chapin FSIII. 2006. Climate Change: Permafrost and the Global Carbon Budget. Science 312:1612–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • D. Blok
    • 1
  • M. M. P. D. Heijmans
    • 1
  • G. Schaepman-Strub
    • 2
  • J. van Ruijven
    • 1
  • F. J. W. Parmentier
    • 3
  • T. C. Maximov
    • 4
  • F. Berendse
    • 1
  1. 1.Nature Conservation and Plant Ecology GroupWageningen UniversityWageningenThe Netherlands
  2. 2.Institute of Evolutionary Biology and Environmental StudiesUniversity of ZürichZürichSwitzerland
  3. 3.Department of Hydrology and Geo-Environmental Sciences, Faculty of Earth and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  4. 4.Biological Problems of the Cryolithozone, Siberian DivisionRussian Academy of SciencesYakutiaThe Republic of Sakha, Russian Federation

Personalised recommendations