Ecosystems

, Volume 14, Issue 4, pp 533–546 | Cite as

Soil Carbon Stocks and Soil Carbon Quality in the Upland Portion of a Boreal Landscape, James Bay, Quebec

  • David Paré
  • Jessica L. Banville
  • Michelle Garneau
  • Yves Bergeron
Article

Abstract

As part of a multidisciplinary project on carbon (C) dynamics of the ecosystems characterizing the Eastmain Region Watershed (James Bay, Quebec), the objective of this study is to compare the soil C stocks and soil organic matter quality among the main upland vegetation types in a boreal region subjected to a high fire frequency. On average, the organic layer contained twice the amount of C than the mineral soil. Closed canopy vegetation types had greater C stocks both in the mineral and in the organic layers than the other more open canopy vegetation types. Landscape features such as drainage and surficial deposit could not discriminate between vegetation types although closed vegetation types were on average found on wetter site conditions. Average soil C contents varied more than 2-fold across vegetation types. On the opposite, except for the organic layer C:N ratio, which was smaller in closed vegetation types, other measured soil organic matter properties (namely specific rate of evolved C after a long-term incubation, hydrolysis acid-resistant C as well as the rate of changes in soil heterotrophic respiration with increasing temperature (Q10)) remained within a narrow range between vegetation types. Therefore, total soil C stocks were a major determinant of both labile C and estimated summer soil heterotrophic respiration rate. The homogeneity of soil organic matter quality across the vegetation types could be attributable to the positive relationship between soil C storage and soil C fluxes observed in this landscape experiencing a high fire frequency. The low variability in soil C quality could help simplify the modelling of soil C fluxes in this environment.

Keywords

soil C cycling boreal forest soil organic matter quality scaling landscape fire cycle 

Notes

Acknowledgments

This research was conducted in collaboration with the EM-1 Reservoirs’ net greenhouse gas emission group financed by Hydro-Québec and thanks to a graduate scholarship to J. L. Banville from the Natural Sciences and Engineering Research Council of Canada. We are grateful to GEOTOP UQAM-MCGILL and the Canadian Forest Service for providing technical support as well as field assistants. We thank Jacques Morissette, Robert Boutin, Luc Pelletier and Luc St-Antoine for their advice and precious help and André Robitaille of the Ministère des Resources naturelles et de la faune du Québec for access to the data of the programme d’inventaire écoforestier nordique.

References

  1. Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD. 2005. Carbon losses from all soil across England and Wales 1978–2003. Nature 437:245–8.PubMedCrossRefGoogle Scholar
  2. Bhatti JS, Apps MJ, Jiang H. 2002. Influence of nutrients, disturbances and site conditions on carbon stocks along a boreal forest transect in central Canada. Plant Soil 242:1–14.CrossRefGoogle Scholar
  3. Bhatti JS, van Kooten GC, Apps MJ, Laird LD, Campbell ID, Campbell C, Turetsky MR, Yu Z, Banfield E. 2003. Carbon balance and climate change in boreal forests. In: Burton PJ, Messier C, Smith DW, Adamowicz WL, Eds. Towards sustainable management of the boreal forest. Ottawa: NRC Research Press. p 799–855.Google Scholar
  4. Borken W, Xu YJ, Davidson EA, Beese F. 2002. Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Glob Change Biol 8:1205–16.CrossRefGoogle Scholar
  5. Callesen I, Liski J, Raulund-Rasmussen K, Olsson MT, Tau-Strand L, Vesterdal L, Westman CJ. 2003. Soil carbon stores in Nordic well-drained forest soils—relationships with climate and texture class. Glob Change Biol 9:358–70.CrossRefGoogle Scholar
  6. Canadell JG, Pataki DE, Gifford R, Houghton RA, Luo Y, Raupach MR, Smith P, Steffen W. 2007. Saturation of the terrestrial carbon sink. In: Canadell JG, Pataki D, Pitelka L, Eds. Terrestrial ecosystems in a changing world. The IGBP Series. Berlin: Springer. p 59–74.CrossRefGoogle Scholar
  7. Carter MR. 1993. Soil sampling and methods of analysis. Boca Raton: Lewis Publishers.Google Scholar
  8. Côté L, Brown S, Paré D, Fyles J, Bauhus J. 2000. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biol Biochem 32:1079–90.CrossRefGoogle Scholar
  9. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–7.PubMedCrossRefGoogle Scholar
  10. CSSC (Canada Soil Survey Committee). 1998. The Canadian System of Soil Classification, 3rd edn, Publ. no 1646e. Agriculture and Agri-Food Canada, Ottawa, Canada. http://sis.agr.gc.ca/cansis/references/1998sc_a.html.
  11. Dalias P, Anderson JM, Bottner P, Coûteaux M-M. 2001. Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions. Glob Change Biol 7:181–92.CrossRefGoogle Scholar
  12. Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–73.PubMedCrossRefGoogle Scholar
  13. Epting J, Verbyla D. 2005. Landscape-level interactions of prefire vegetation, burn severity, and postfire vegetation over a 16-year period in interior Alaska. Can J For Res 35:1367–77.CrossRefGoogle Scholar
  14. Flannigan MD, Bergeron Y, Engelmark O, Wotton BM. 1998. Future wildfire in circumboreal forests in relation to global warming. J Veg Sci 9:469–76.CrossRefGoogle Scholar
  15. Giardina CP, Ryan MG, Hubbard RM, Binkley D. 2001. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci Soc Am J 65:1272–9.CrossRefGoogle Scholar
  16. Girard F, Payette S, Gagnon R. 2008. Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. J Biogeogr 35:529–37.CrossRefGoogle Scholar
  17. Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK. 1997. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res 102:29–41.CrossRefGoogle Scholar
  18. Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C. 2001. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–411.CrossRefGoogle Scholar
  19. Grenier M, Labrecque S, Garneau M. 2008. Cartographie des milieux secs pour le territoire de la phase 1 du secteur de la rivière Eastmain. Accord de collaboration entre Hydro-Québec et Environnement Canada 6161-5-0412. p 30.Google Scholar
  20. Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES. 2000. The role of fire in the boreal carbon budget. Glob Change Biol 6(Supp 1):174–84.CrossRefGoogle Scholar
  21. Hoey TB. 2004. The size of sedimentary particles. In: Evans DJA, Benn DI, Eds. A practical guide to the study of glacial sediments. London: Oxford University Press. p 54–77.Google Scholar
  22. IPCC (Intergovernmental Panel on Climate Change). 2001. Chapter 1: Global perspecives. In: Watson RT, Nobel IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ, Eds. Land use, land-use change and forestry. Cambridge: Cambridge University Press. p 550.Google Scholar
  23. Jasinski JPP, Payette S. 2005. The creation of alternative stable states in the southern boreal forest, Québec, Canada. Ecol Monogr 75:561–83.CrossRefGoogle Scholar
  24. Johnstone JF, Chapin FSIII, Hollingsworth TN, Mack MC, Romanovsky V, Turetsky M. 2010. Fire, climate change, and forest resilience in interior Alaska. Can J For Res 40:1302–12.CrossRefGoogle Scholar
  25. Kirschbaum MUF. 2006. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38:2510–18.CrossRefGoogle Scholar
  26. Knorr W, Prentice IC, House JI, Holland EA. 2005. Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–300.PubMedCrossRefGoogle Scholar
  27. Kurz WA, Apps M. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9:526–47.CrossRefGoogle Scholar
  28. Kurz WA, Apps M, Banfield E, Stinson G. 2002. Forest carbon accounting at the operational scale. For Chron 78:672–9.Google Scholar
  29. Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET. 2008. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA 105:1551–5.PubMedCrossRefGoogle Scholar
  30. Ladegaard-Pedersen P, Elberling B, Vesterdal L. 2005. Soil carbon stocks, mineralization rates, and CO2 effluxes under 10 tree species on contrasting soil types. Can J For Res 35:1277–84.CrossRefGoogle Scholar
  31. Le Goff H, Girardin MP, Flannigan MD, Bergeron Y. 2008. Dendroclimatic inference of wildfire activity in Quebec over the 20th century and implications for natural disturbance-based forest management at the northern limit of the commercial forest. Int J Wildl Fire 17:348–62.CrossRefGoogle Scholar
  32. Leboeuf A, Létourneau J-P, Robitaille A, Matejek S. 2009. Guide de stratification écoforestière. Programme d’inventaire écoforestier nordique. Ministère des Ressources naturelles et de la Faune du Québec. 29 p.Google Scholar
  33. Légaré S, Paré D, Bergeron Y. 2005. Influence of aspen on forest floor properties in black spruce-dominated stands. Plant Soil 275:207–20.CrossRefGoogle Scholar
  34. Liski J, Ilvesniemi H, Mäkelä A, Westman CJ. 1999. CO2 emissions from soil in response to climate warming are overestimated—The decomposition of old organic matter is tolerant of temperature. Ambio 28:171–4.Google Scholar
  35. Lovett GM, Weathers KC, Arthur MA. 2002. Control of nitrogen loss from forested watersheds by soil carbon:nitrogen ratio and tree species composition. Ecosystems 5:712–18.CrossRefGoogle Scholar
  36. Manies KL, Harden JW, Yoshikawa K, Randerson J. 2001. The effect of soil drainage on fire and carbon cycling in Central Alaska. U.S. Geol Surv Prof Paper 1678:145–52.Google Scholar
  37. Mansuy N, Gauthier S, Robitaille A, Bergeron Y. 2010. The impact of surficial deposit-drainage combinations associated with physical factors on spatial variations of fire cycle in northern Quebec, Canada. J Wildl Fire 19:1083–98.CrossRefGoogle Scholar
  38. McLauchlan KK, Hobbie SE. 2004. Comparison of labile soil organic matter fractionation techniques. Soil Sci Soc Am J 68:1616–25.CrossRefGoogle Scholar
  39. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–6.PubMedCrossRefGoogle Scholar
  40. O’Neill KP, Richter DD, Kasischke ES. 2006. Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry 80:1–20.CrossRefGoogle Scholar
  41. Paré D, Boutin R, Larocque GR, Raulier F. 2006. Effect of temperature on soil organic matter decomposition in three forest biomes of eastern Canada. Can J Soil Sci 86:247–56.CrossRefGoogle Scholar
  42. Parton WJ, Schimel DS, Cole CV, Ojima DS. 1987. Analysis of the factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–9.CrossRefGoogle Scholar
  43. Paul EA, Morris SJ, Böhm S. 2001. The determination of soil C pool sizes and turnover rates: biophysical fractionation and tracers. In: Lal R, Kimble JM, Follett RF, Stewart BA, Eds. Assessment methods for soil carbon. Boca Raton: Lewis Publishers. p 193–206.Google Scholar
  44. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK. 2002. Change in soil carbon following afforestation. For Ecol Manag 168:241–57.CrossRefGoogle Scholar
  45. Paul EA, Morris SJ, Conant RT, Plante AF. 2006. Does the acid hydrolysis incubation method measure meaningful soil organic carbon pools? Soil Sci Soc Am J 70:1023–35.CrossRefGoogle Scholar
  46. Payette S, Bhiry N, Delwaide A, Simard M. 2000. Origin of the lichen woodland at its southern range limit in eastern Canada: the catastrophic impact of insect defoliators and fire on the spruce-moss forest. Can J For Res 30:288–305.CrossRefGoogle Scholar
  47. Pregitzer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Change Biol 10:2052–77.CrossRefGoogle Scholar
  48. Rey A, Jarvis P. 2006. Modelling the effect of temperature on carbon mineralization rates across a network of European forest sites (FORCAST). Glob Change Biol 12:1894–908.CrossRefGoogle Scholar
  49. Robitaille A, Saucier J-P. 1998. Paysages régionaux du Québec méridional. Sainte-Foy (Québec): Les Publications du Québec. p 213.Google Scholar
  50. Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D. 2007. Forest productivity decline caused by successional paludification of boreal soils. Ecol Appl 17:1619–37.PubMedCrossRefGoogle Scholar
  51. Stanford G, Smith SJ. 1972. Nitrogen mineralization potentials of soils. Proc Soil Sci Soc Am 36:465–72.CrossRefGoogle Scholar
  52. Thiffault E, Hannam KD, Quideau SA, Paré D, Bélanger N, Oh S-W, Munson AD. 2008. Chemical composition of forest floor and consequences for nutrient availability after wildfire and harvesting in the boreal forest. Plant Soil 308:37–53.CrossRefGoogle Scholar
  53. Torn MS, Trumbore SE, Chadwick OA, Vitousec PM, Hendricks DM. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389:170–3.CrossRefGoogle Scholar
  54. Trumbore S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground dynamics. Ecol Appl 10:399–411.CrossRefGoogle Scholar
  55. Trumbore SE, Chadwick OA, Amundson R. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–6.CrossRefGoogle Scholar
  56. Wilson CV. 1971. Le climat du Québec, partie 1: atlas climatique. Service météorologique du Canada, Études climatologiques no 11.Google Scholar
  57. van Bellen S, Dallaire P-L, Garneau, M, Bergeron, Y. 2011. Quantifying spatial and temporal holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada. Glob Biogeochem Cycles. doi: 10.1029/2010GB003877.
  58. Yu Z, Apps MJ, Bhatti JS. 2002. Implications of floristic and environmental variation for carbon cycle dynamics in boreal forest ecosystems of central Canada. J Veg Sci 13:327–40.CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2011

Authors and Affiliations

  • David Paré
    • 1
  • Jessica L. Banville
    • 2
    • 3
  • Michelle Garneau
    • 2
    • 3
  • Yves Bergeron
    • 4
  1. 1.Natural Resources Canada, Canadian Forest Service, Laurentian Forestry CentreStn. Sainte-Foy, QuebecCanada
  2. 2.Département de GéographieUniversité du Québec à MontréalMontrealCanada
  3. 3.GEOTOP UQÀM-McGillUniversité du Québec à MontréalMontrealCanada
  4. 4.Chaire Industrielle CRSNG-UQAT-UQAM en Aménagement Forestier DurableUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada

Personalised recommendations