, Volume 14, Issue 2, pp 298–310 | Cite as

Tree–Grass Coexistence in the Everglades Freshwater System

  • Paolo D’OdoricoEmail author
  • Vic Engel
  • Joel A. Carr
  • Steven F. Oberbauer
  • Michael S. Ross
  • Jay P. Sah


Mosaic freshwater landscapes exhibit tree-dominated patches —or tree islands—interspersed in a background of marshes and wet prairies. In the Florida Everglades, these patterned landscapes provide habitat for a variety of plant and animal species and are hotspots of biodiversity. Even though the emergence of patchy freshwater systems has been associated with climate histories, fluctuating hydrologic conditions, and internal feedbacks, a process-based quantitative understanding of the underlying dynamics is still missing. Here, we develop a mechanistic framework that relates the dynamics of vegetation, nutrients and soil accretion/loss through ecogeomorphic feedbacks and interactions with hydrologic drivers. We show that the stable coexistence of tree islands and marshes results as an effect of their both being (meta-) stable states of the system. However, tree islands are found to have only a limited resilience, in that changes in hydrologic conditions or vegetation cover may cause an abrupt shift to a stable marsh state. The inherent non-linear and discontinuous dynamics determining the stability and resilience of tree islands should be accounted for in efforts aiming at the management, conservation and restoration of these features.


Tree islands Peatland Tree–grass coexistence Alternative stable states Resilience Savanna State shift 



Support from the National Park Service (Everglades National Park #H5284080004) is gratefully acknowledged. This manuscript has greatly benefited from comments provided by Dr. Laurel G. Larsen and Dr. Judson W. Harvey, an anonymous reviewer, and the subject editor, Dr. Donald DeAngelis.


  1. Anderies JM, Janssen MA, Walker BH. 2002. Grazing, management, resilience and the dynamics of fire-driven rangeland system. Ecosystems 5:23–44.CrossRefGoogle Scholar
  2. Armentano TV. 1980. Drainage of organic soils as a factor in the world carbon cycle. Bioscience 30(12):825–30.CrossRefGoogle Scholar
  3. Armentano TV, Jones DT, Ross MS, Gamble BW. 2002. Vegetation pattern and process in tree islands of the southern Everglades and adjacent areas. In: Sklar FH, van der Valk A, Eds. Tree islands of the everglades. Dordrecht: Kluwer. p 225–81.Google Scholar
  4. Borgogno F, D’Odorico P, Laio F, Ridolfi L. 2009. Mathematical models of vegetation pattern formation in Ecohydrology. Rev Geophys 47:RG1005. doi: 10.1029/2007RG000256.
  5. Brandt LA, Silveira JE, Kitchens WM. 2002. Tree islands of the Arthur R. Marshall Loxahatchee National Wildlife Refuge. In: Sklar FH, Valk Avd, Eds. Tree Islands of the Everglades. Dordrecht: Kluwer Academic Publishers. p 311–35.Google Scholar
  6. Brown S, Gillespie AJR, Lugo AE. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. For Sci 35(4):881–902.Google Scholar
  7. Charley JL, West NE. 1975. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. J Ecol 63(3):945–63.CrossRefGoogle Scholar
  8. Craighead FC. 1971. The trees of south Florida. Volume 1: the natural environments and their succession, University of Miami Press, Coral Gables, FL., 212 pp.Google Scholar
  9. Davis SM, Gunderson LH, Park WA, Richardson JR, Mattson JE. 1994. Landscape dimension, composition, and function in a changing Everglades ecosystem. In: Davis SM, Ogden JC, Eds. Everglades: the ecosystem and its restoration. Delray Beach (FL): St. Lucie Press. p 419–44.Google Scholar
  10. DeLonge M, D’Odorico P, Lawrence D. 2008. Feedbacks between phosphorous deposition and canopy cover: the emergence of multiple states in dry tropical forests. Glob Change Biol 14(1):154–60. doi: 10.1111/j.1365-2486.2007.01470.x.Google Scholar
  11. D’Odorico P, Laio F, Ridolfi L. 2006. A probabilistic analysis of fire-induced tree-grass coexistence in savannas. Am Nat 167(3):E79–87.PubMedCrossRefGoogle Scholar
  12. Dougill AJ, Thomas AD. 2002. Nebkha dunes in the Molopo Basin, South Africa and Botswana: formation, controls and their validity as indicators of soil degradation. J Arid Environ 50:413–28.CrossRefGoogle Scholar
  13. Dublin HT, Sinclair ARE, McGlade J. 1990. Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. J Anim Ecol 59:1147–64.CrossRefGoogle Scholar
  14. Felker P, Diaz-De Leon V. 2005. An improved tool for the fabrication of dendrometerbands to estimate growth as function of treatments in slow growing native Prosopis stands. For Ecol Manag 209:353–6.CrossRefGoogle Scholar
  15. Frederick PC, Powell GVN. 1994. Nutrient transport by wading birds in the Everglades. In: Davis SM, Ogden JC, Eds. Everglades: the ecosystem and its restoration. Delray Beach (FL): St. Lucie Press. Google Scholar
  16. Givnish TJ, Volin JC, Owen VD, Volin VC, Muss JD, Glaser PH. 2008. Vegetation differentiation in the patterned landscape of the central Everglades: importance of local and landscape drivers. Global Ecol Biogeogr 17:384–402.CrossRefGoogle Scholar
  17. Glaser PH. 1987. The Ecology of Patterned Boreal Peatlands of Northern Minnesota: a Community Profile. U.S. Fish and Wildlife, Serv. Rep., Report 85 (7.14), Washington, DC.Google Scholar
  18. Glaser PH. 1992. Raised bogs in eastern North America–Regional controls for species richness and floristic assemblages. J Ecol 80:535–54.CrossRefGoogle Scholar
  19. Graf M-T, Schwadron M, Stone PA, Ross M, Chmura GL. 2008. An enigmatic carbonate layer in Everglades tree island peats. EOS 89(12):117–18.CrossRefGoogle Scholar
  20. Hagerthey SE, Newman S, Rutchey K, Smith EP, Godin J. 2008. Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication. Ecol Monogr 78:547–65.CrossRefGoogle Scholar
  21. Kwon H-H, Lall U, Moon Y-I, Khalil AF, Ahn H. 2006. Episodic interannual climate oscillations and their influence on seasonal rainfall in the Everglades National Park. Water Resour Res 42:W11404. doi: 10.1029/2006WR005017.
  22. Khalaf FI, Misak R, Al-Dousari A. 1995. Sedimentological and morphological characteristics of some nabkha deposits in the northern coastal plain of Kuwait, Arabia. J Arid Environ 29(3):267–292, ISSN 0140-1963.Google Scholar
  23. Lago ME, Miralles-Wilhelm F, Mahmoudi M, Engel V. 2010. Numerical modeling of the effects of water flow, sediment transport and vegetation growth on the spatiotemporal patterning of the ridge and slough landscape of the Everglades wetland. Adv Water Res. doi: 10.1016/j.advwatres.2010.07.009.
  24. Larsen LG, Harvey JW, Crimaldi JP. 2007. A delicate balance: ecohydrological feedbacks governing landscape morphology in a lotic peatland. Ecol Monogr 77:591–614.CrossRefGoogle Scholar
  25. Larsen LG, Harvey JW. 2010. Modeling of hydroecological feedbacks predicts distinct classes of landscape pattern, process, and restoration potential in shallow aquatic ecosystems. Geomorphology. doi: 10.1016/j.geomorph.2010.03.015.
  26. Lawrence D, D’Odorico P, Diekmann L, DeLonge M, Das R, Eaton J. 20701. 2007. Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proc Natl Acad Sci USA PNAS 104(52):52:20696–20701.CrossRefGoogle Scholar
  27. Luken JO, Billings WD. 1985. The influence of microtopographic heterogeneity on carbon dioxide efflux from a subarctic bog. Holarctic Ecol 8:306–12.Google Scholar
  28. Jones DT, Sah JP, Ross MS, Oberbauer SF, Hwang B, Jayachandran K. 2006. Response of twelve tree species common in Everglades tree islands to simulated hydrologic regimes. Wetlands 26(3):830–44.CrossRefGoogle Scholar
  29. Macek P, Rejmankova E, Fuchs R. 2009. Biological activities as patchiness driving forces in wetlands of northern Belize. Oikos 118:1687–94.CrossRefGoogle Scholar
  30. Marani M, D’Alpaos A, Lanzoni S, Carniello L, Rinaldo A. 2007. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys Res Lett 34:L11402. doi: 10.1029/2007GL030178.CrossRefGoogle Scholar
  31. McCarthy TS, Ellery WN. 1994. The effect of vegetation on soil and ground water chemistry and hydrology of islands in the seasonal swamps of the Okavango fan Botswana. J Hydrol 154:169–93.CrossRefGoogle Scholar
  32. McCarthy TS. 2006. Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J Hydrol 320(3–4):264–82.CrossRefGoogle Scholar
  33. Mitsch WJ, Gosselink JG. 2000. Wetlands. New York: Wiley.Google Scholar
  34. Moore TR, Knowles R. 1989. The influence of water-table levels on methane and carbon-dioxide emissions from peatland soils. Can J Sci 69(1):33–8.CrossRefGoogle Scholar
  35. Naiman R, Decamps H. 1997. The ecology of interfaces: Riparian zones. Annu Rev Ecol Syst 28:621–58.CrossRefGoogle Scholar
  36. Nickling WG, Wolfe SA. 1994. The morphology and origin of Nabkhas, Region of Mopti, Mali, West Africa. J Arid Environ 28:13–30.CrossRefGoogle Scholar
  37. Noy-Meir I. 1975. Stability of grazing systems: an application of predator-prey graphs. J Ecol 63:459–81.CrossRefGoogle Scholar
  38. Orem WH, Willard DA, Lerch HE, Bates AL, Boyland A, Comm M. 2002. Nutrient geochemistry of sediments from two tree islands in Water Conservation Area #B, the Everglades, Florida. In: Sklar FH, van der Valk AG, Eds. Tree islands of the Everglades. Dordrecht: Kluwer Academic Publishers. p 153–86.Google Scholar
  39. Prance GT, Schaller GB. 1982. Preliminary study of some vegetation types of the Pantanal, Mato Grosso, Brazil. Brittonia 34:228–51.CrossRefGoogle Scholar
  40. Ravi S, D’Odorico P, Okin GS. 2007. Hydrologic and aeolian controls on vegetation patterns in arid landscapes. Geophys Res Lett 34:L24S23. doi: 10.1029/2007GL031023.CrossRefGoogle Scholar
  41. Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44(2):81–99.CrossRefGoogle Scholar
  42. Richardson CJ. 2009. The Everglades: North America’s subtropical wetland. Wetlands Ecol Manage. doi: 10.1007/s11273-009-9156-4.
  43. Richardson CJ. 2000. Freshwater wetlands. In: Barbour MG, Billings WD, Eds. North American terrestrial vegetation. Cambridge: Cambridge University Press. p 449–98.Google Scholar
  44. Ridolfi L, D’Odorico P, Laio F. 2006. Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems. Water Resour Res 42:W01201. doi: 10.1029/2005WR004444.CrossRefGoogle Scholar
  45. Ridolfi L, Laio F, D’Odorico P. 2008. Fertility island formation and evolution in dryland ecosystems. Ecol Soc 13(1):5.Google Scholar
  46. Rietkerk M, Dekker SC, Wassen MJ, Verkroost AWM, Bierkens MFP. 2004. A putative mechanism for bog patterning. Am Nat 163(5):699–708.PubMedCrossRefGoogle Scholar
  47. Ross MS, Mitchell-Bruker S, Sah JP, Stothoff S, Ruiz PL, Reed DL, Jayachandran K, Coultas CL. 2006. Interaction of hydrology and nutrient limitation in the ridge and slough landscape of the southern Everglades. Hydrobiologia 569:37–59.CrossRefGoogle Scholar
  48. Sah JP. 2004. Vegetation structure and composition in relation to the hydrological and soil environments in tree islands of Shark Slough. Chapter 6. In: Ross MS, Jones DT, Eds. Tree Islands in the Shark Slough Landscape: interactions of vegetation, hydrology and soils. Final Report submitted to Everglades National Park, U.S. Department of the Interior, National Park Service.Google Scholar
  49. Sarmiento G. 1984. The Ecology of Neotropical Savannas. Cambridge (MA): Harvard University Press.Google Scholar
  50. Scheffer M, Carpenter S, Foley JA, Folke C, Walker BH. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6.PubMedCrossRefGoogle Scholar
  51. Schlesinger WH, Reynolds JF, Cunnigham GL, Huenneke LF, Jarrell WM, Virginia RA, Whitford WG. 1990. Biological feedbacks in global desertification. Science 147:1043–8.CrossRefGoogle Scholar
  52. Scholes RJ, Archer SR. 1997. Tree-grass interactions in savannas. Ann Rev Ecol Syst 28:517–44.CrossRefGoogle Scholar
  53. Scholes RJ, Walker BH. 1993. An African Savanna. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  54. Science Coordination Team (SCT). 2003. The role of flow in the everglades ridge and slough landscape, South Florida Ecosystem Restoration Working Group, 62 pp.Google Scholar
  55. Shachak M, Boeken B, Groner E, Kadmon R, Lubin Y, Meron E, Ne’Eman G, Perevolotsky A, Shkedy Y, Ungar ED. 2008. Woody species as landscape modulators and their effects on biodiversity patterns. Bioscience 58:209–21.CrossRefGoogle Scholar
  56. Sklar FH. 2001. In: Kloor K, Eds. Forgotten Islands, Audubon Magazine, July–August.Google Scholar
  57. Sklar FH, van der Valk A, Eds. 2002. Tree islands of the Everglades. Dordrecht: Kluwer Academic Publishers. p 541.Google Scholar
  58. Tomassen HBM, Smolders AJP, Lamers LPM, Roelofs JGM. 2005. How bird droppings can affect the vegetation composition of ombrotrophic bogs. Can J Bot 83:1046–56.CrossRefGoogle Scholar
  59. Troxler TG, Childers DL. 2009. Litter decomposition promotes differential feedbacks in an oligotrophic southern Everglades wetland. Plant Ecol 200:69–82.CrossRefGoogle Scholar
  60. Van der Valk AG, Warner BG. 2009. The development of patterned mosaic landscapes: an overview. Plant Ecol 200:1–7.CrossRefGoogle Scholar
  61. Vetaas OR. 1992. Micro-site effects of trees and shrubs in dry savannas. J Veg Sci 3:337–44.CrossRefGoogle Scholar
  62. Wang L, D’Odorico P, Macko S, Ringrose S, Coetzee S. 2007. Biogeochemistry of Kalahari sands. J Arid Environ 71:259–79.CrossRefGoogle Scholar
  63. Walker BH, Ludwig D, Holling CS, Peterman RM. 1981. Stability of semiarid savanna grazing systems. J Ecol 69:473–98.CrossRefGoogle Scholar
  64. Walker BH, Noy-Meir I. 1982. Aspects of stability and resilience of savanna ecosystems. In: Walker BH, Huntley B, Eds. Ecology of Subtropical Savannas. Berlin: Springer. p 556–90.Google Scholar
  65. Walter H. 1971. Ecology of tropical and subtropical vegetation. Edinburgh: Oliver and Boyd.Google Scholar
  66. Watts DL, Cohen MJ, Heffernan JB, Osborne TZ. 2010. Hydrologic Modification and the Loss of Self-organized Patterning in the Ridge–Slough Mosaic of the Everglades. Ecosystems 13(6):813–27. doi: 10.1007/s10021-010-9356-z.CrossRefGoogle Scholar
  67. Wetzel PR. 2002. Analysis of tree island vegetation communities. In: Sklar FH, van der Valk A, Eds. Tree Islands of the Everglades. Dordrecht: Kluwer Academic Publishers. p 357–89.Google Scholar
  68. Wetzel PR, van der Valk A, Newman S, Gawlik DE, Troxler-Gann TG, Coronado-Molina CA et al. 2005. Maintaining tree islands in the Florida Everglades: nutrient redistribution is the key. Front Ecol Environ 3:370–6.CrossRefGoogle Scholar
  69. Wetzel PR, van der Valk AG, Newman S, Coronado CA, Troxler-Gann TG, Childers DL, Orem WH, Sklar FH. 2009. Heterogeneity of phosphorus distribution in a patterned landscape, the Florida Everglades. Plant Ecol 200:83–90.CrossRefGoogle Scholar
  70. Willard DA, Bernhardt CE, Holmes CW, Landacre B, Marot M. 2006. Response of Everglades Tree Islands to environmental change. Ecol Monogr 76(4):565–83.CrossRefGoogle Scholar
  71. Wilson JB, Agnew ADQ. 1992. Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside of USA) 2011

Authors and Affiliations

  • Paolo D’Odorico
    • 1
    Email author
  • Vic Engel
    • 2
  • Joel A. Carr
    • 1
  • Steven F. Oberbauer
    • 3
  • Michael S. Ross
    • 4
    • 5
  • Jay P. Sah
    • 5
  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  2. 2.South Florida Natural Resource CenterHomesteadUSA
  3. 3.Department of Biological SciencesFlorida International UniversityMiamiUSA
  4. 4.Department of Environmental StudiesFlorida International UniversityMiamiUSA
  5. 5.Southeast Environmental Research Center, Florida International UniversityMiamiUSA

Personalised recommendations