, Volume 13, Issue 6, pp 932–947 | Cite as

The Origin and Dynamics of Subalpine White Spruce and Balsam Fir Stands in Boreal Eastern North America

  • Guillaume de LafontaineEmail author
  • Serge Payette


Associations among the few tree species in the North American boreal landscape are the result of complex interactions between climate, biota, and historical disturbances during the Holocene. The closed-crown boreal forest of eastern North America is subdivided into two ecological regions having distinct tree species associations; the balsam fir zone and the black spruce zone, south and north of 49°N, respectively. Subalpine old-growth stands dominated by trees species typical of the balsam fir forest flora (either balsam fir or white spruce) are found on high plateaus, some of which are isolated within the black spruce zone. Here we identified the ecological processes responsible for the distinct forest associations in the subalpine belt across the eastern boreal landscape. Extensive radiocarbon dating, species composition, and size structure analyses indicated contrasted origin and dynamics of the subalpine forests between the two ecological regions. In the black spruce zone, the subalpine belt is a mosaic of post-fire white spruce or balsam fir stands coexisting at similar elevation on the high plateaus. With increasing time without wildfire, the subalpine forests become structurally similar to the balsam fir forest of the fir zone. These results concur with the hypothesis that the subalpine forests of this area are protected remnants of an historical northern expansion of the fir zone. Its replacement by the fire-prone black spruce forest flora was caused by recurrent fires. In the subalpine belt of the fir zone, no fire was recorded for several millennia. Harsh climate at high altitude is the primary factor explaining white spruce dominance over balsam fir forming a distinct subalpine white spruce belt above the balsam fir dominated forest.


14C AMS dating Abies balsamea boreal forest charcoal analysis eastern North America fire disturbance Picea glauca size structure analysis subalpine forest 



We wish to thank Catherine Plasse, Joannie Savard, and William H. Romme and many others who helped us with field work as well as two anonymous reviewers for helpful comments. This work was supported by a NSERC research grant to S.P. and Alexander Graham Bell Canada Graduate Scholarship to G.dL.

Supplementary material

10021_2010_9366_MOESM1_ESM.doc (259 kb)
Supplementary material 1 (DOC 259 kb)


  1. Aplet GH, Laven RD, Smith FW. 1988. Patterns of community dynamics in Colorado Engelmann spruce-subalpine fir forests. Ecology 69:312–19.CrossRefGoogle Scholar
  2. Antos JA, Parish R. 2002. Dynamics of an old-growth, fire-initiated, subalpine forest in southern interior British Columbia: tree size, age, and spatial structure. Can J For Res 32:1935–46.CrossRefGoogle Scholar
  3. Awada T, Henebry GM, Redmann RE, Sulistiyowati H. 2004. Picea glauca dynamics and spatial pattern of seedlings regeneration along a chronosequence in the mixedwood section of the boreal forest. Ann For Sci 61:789–94.CrossRefGoogle Scholar
  4. Bonan GB, Shugart HH. 1989. Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28.CrossRefGoogle Scholar
  5. Brousseau D. 1926. Report on exploration of Montmorency crown lands, in the province of Québec for Anglo-Canadian Pulp and Paper Mills, Ldt.Google Scholar
  6. Caccianiga M, Payette S. 2006. Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). J Biogeogr 33:2120–35.CrossRefGoogle Scholar
  7. Cogbill CV, White PS. 1991. The latitude-elevation relationship for spruce-fir forest and treeline along the Appalachian mountain chain. Vegetatio 94:153–75.CrossRefGoogle Scholar
  8. Davis RB. 1966. Spruce-fir forests of the coast of Maine. Ecol Monogr 36:79–94.CrossRefGoogle Scholar
  9. Day RJ. 1972. Stand structure, succession, and use of southern Alberta’s Rocky Mountain forest. Ecology 53:472–8.CrossRefGoogle Scholar
  10. de Lafontaine G, Turgeon J, Payette S. 2010. Phylogeography of white spruce (Picea glauca) in eastern North America reveals contrasting ecological trajectories. J Biogeogr 37:741–51.CrossRefGoogle Scholar
  11. Desponts M, Brunet G, Bélanger L, Bouchard M. 2004. The eastern boreal old-growth balsam fir forest: a distinct ecosystem. Can J Bot 82:830–49.CrossRefGoogle Scholar
  12. Dix RL, Swan JMA. 1971. The roles of disturbance and succession in upland forest at Candle Lake, Saskatchewan. Can J Bot 49:657–76.CrossRefGoogle Scholar
  13. Galipeau C, Kneeshaw D, Bergeron Y. 1997. White spruce and balsam fir colonization of a site in the southeastern boreal forest as observed 68 years after fire. Can J For Res 27:139–47.CrossRefGoogle Scholar
  14. Girard F, Payette S, Gagnon R. 2009. Origin of the lichen-spruce woodland in the closed-crown forest zone of eastern Canada. Glob Ecol Biogeogr 18:291–303.CrossRefGoogle Scholar
  15. Grandtner MM. 1966. La végétation forestière du Québec méridional. Québec: Les Presses de l’Université Laval. p 216.Google Scholar
  16. Heinselman ML. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quatern Res 3:329–82.CrossRefGoogle Scholar
  17. Hett JM. 1971. A dynamic analysis of age in sugar maple seedlings. Ecology 52:1071–4.CrossRefGoogle Scholar
  18. Hett JM, Loucks OL. 1971. Sugar maple (Acer saccharum Marsh.) seedling mortality. J Ecol 59:507–20.CrossRefGoogle Scholar
  19. Hett JM, Loucks OL. 1976. Age structure models of balsam fir and eastern hemlock. J Ecol 64:1029–44.CrossRefGoogle Scholar
  20. Jurdant M. 1959 Étude écologique des associations des forêts résineuses de la région de Québec. Québec: MSc Thesis, Université Laval. p 81.Google Scholar
  21. Lafond A. 1964. La classification écologique des forêts par la végétation: application à la province de Québec. Québec: Faculté d’Arpentage et de Génie forestier, Université Laval. p 106.Google Scholar
  22. Lafond A. 1974. Forests and forestry in Québec. HR. MacMillan Forestry Lecture Series. Vancouver: The University of British Columbia. p 24.Google Scholar
  23. Laliberté A-C, Payette S. 2008. Primary succession of subarctic vegetation and soil on the fast-rising coast of Hudson Bay, Canada. J Biogeogr 35:1989–99.CrossRefGoogle Scholar
  24. La Roi GH. 1967. Ecological studies in the boreal spruce-fir forests of the North American taiga. I. Analysis of the vascular flora. Ecol Monogr 37:229–53.CrossRefGoogle Scholar
  25. Leak WB. 1975. Age distribution in virgin red spruce and northern hardwoods. Ecology 56:1451–4.CrossRefGoogle Scholar
  26. Lieffers VJ, Stadt KJ, Navratil S. 1996. Age structure and growth of understory white spruce under aspen. Can J For Res 26:1002–7.CrossRefGoogle Scholar
  27. Mueller-Dombois D, Ellenberg H. 1974. Aims and methods of vegetation ecology. New York: Wiley. p 547.Google Scholar
  28. Nienstaedt H, Zasada JC. 1990. White spruce. In: Burns RM, Honkala BH, Eds. Silvics of North America: 1. Conifers. Agriculture handbook 654. U.S. Department of Agriculture, Forest Service: Washington, DC. p 389–442.Google Scholar
  29. Oosting HJ, Reed JF. 1952. Virgin spruce-fir of the Medicine Bow Mountains. Ecol Monogr 22:69–91.CrossRefGoogle Scholar
  30. Payette S. 1992. Fire as a controlling process in the North American boreal forest. In: Shugart HH, Leemans R, Bonan GB, Eds. A systems analysis of the global boreal forest. Cambridge (UK): Cambridge University Press. p 144–69.CrossRefGoogle Scholar
  31. Payette S. 1993. The range limit of boreal tree species in Québec-Labrador: an ecological and palaeoecological interpretation. Rev Palaeobot Palynol 79:7–30.CrossRefGoogle Scholar
  32. Payette S. 2007. Contrasted dynamics of northern Labrador tree lines caused by recent climate change and migrational lag. Ecology 88:770–80.CrossRefPubMedGoogle Scholar
  33. Payette S, Boudreau F. 1984. Évolution postglaciaire des hauts sommets alpins et subalpins de la Gaspésie. Can J Earth Sci 21:319–35.Google Scholar
  34. Payette S, Filion L. 1985. White spruce expansion at the tree line and recent climatic change. Can J For Res 15:241–51.CrossRefGoogle Scholar
  35. Payette S, Fortin M-J, Gamache I. 2001. The subarctic forest-tundra: the structure of a biome in a changing climate. Bioscience 51:709–18.CrossRefGoogle Scholar
  36. Pollock SL, Payette S. 2010. Stability in the patterns of long-term development and growth of the Canadian spruce-moss forest. J Biogeogr. doi: 10.1111/j.1365-2699.2010.02332.x.
  37. Potvin F, Beaupré P, Laprise G. 2003. The eradication of balsam fir stands by white-tailed deer on Anticosti Island, Québec: a 150-year process. Ecoscience 10:487–95.Google Scholar
  38. Reimer PJ, Baillie MGL, Bard E, Bayliss A et al. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 ka BP. Radiocarbon 46:1029–58.Google Scholar
  39. Ritchie JC. 1987. Postglacial vegetation of Canada. Cambridge: Cambridge University Press. p 178.Google Scholar
  40. Romme WH, Knight DH. 1981. Fire frequency and subalpine forest succession along a topographic gradient in Wyoming. Ecology 62:319–26.CrossRefGoogle Scholar
  41. Rowe JS. 1972. Les régions forestières du Canada. Ottawa: Ministère de l’Environnement, Service canadien des forêts. p 172.Google Scholar
  42. Rowe JS, Scotter GW. 1973. Fire in the boreal forest. Quatern Res 3:444–64.CrossRefGoogle Scholar
  43. Saucier J-P. 1994. Le point d’observation écologique: normes techniques. Québec: Ministère des ressources naturelles, Direction de la gestion des stocks forestiers, Service des inventaires forestiers, p 116.Google Scholar
  44. Schoch W, Heller I, Schweingruber FH, Kienast F. 2004. Wood anatomy of central European Species. [online]
  45. Schweingruber FH. 1978. Microscopic wood anatomy, Anatomie microscopique du bois, Mikroskopische Holzanatomie. Birmensdorf: Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Zürcher AG, Zug. p 226.Google Scholar
  46. Schweingruber FH. 1990. Anatomie europaïscher Hölzer. Anatomy of European woods. Eidgenöss. Forschungsanst für Wald, Schnee und Landschaft. Bern: Verlag Paul Haupt. p 800.Google Scholar
  47. Simard M-J, Bergeron Y, Sirois L. 1998. Conifer seedling recruitment in a southeastern Canadian boreal forest: the importance of substrate. J Veg Sci 9:575–82.CrossRefGoogle Scholar
  48. Stuiver M, Reimer PJ, Reimer RW. 2005. CALIB 5.0. [WWW program and documentation].
  49. Ter Braak CJF. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–79.CrossRefGoogle Scholar
  50. Ter Braak CJF. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69:69–77.CrossRefGoogle Scholar
  51. Veblen TT. 1986. Treefalls and the coexistence of conifers in subalpine forests of the central rockies. Ecology 67:644–9.CrossRefGoogle Scholar
  52. Zar JH. 1984. Biostatistical analysis. 2nd edn. Englewood Cliffs, NJ: Prentice-Hall. p 718.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.NSERC Northern Research Chair, Centre d’Études Nordiques, Département de BiologieUniversité LavalQuébecCanada

Personalised recommendations