, Volume 13, Issue 4, pp 612–627 | Cite as

The Bryosphere: An Integral and Influential Component of the Earth’s Biosphere

  • Zoë LindoEmail author
  • Andrew Gonzalez


A significant fraction of the Earth’s land surface is dominated by bryophytes. Research on carbon and nitrogen budgets of tundra, boreal, and peatland ecosystems has demonstrated the important role of mosses in understanding global change. Bryophytes are also habitat to a highly diverse microbiota that plays a key role in the function of these ecosystems. Here we define the term bryosphere to emphasize the combined role of mosses and their associated organisms in the functioning of ecosystems from local to global scales. In this minireview, we emphasize the value of the bryosphere as a spatially bounded, whole ecosystem that integrates aboveground and belowground processes, and we highlight the potential of the bryosphere as a natural model system (NMS) to assist in the study of environmental change on biodiversity and ecosystem functioning. We propose a formal definition of the bryosphere, attempt to summarize the current state of knowledge of the bryosphere, and discuss how the bryosphere can be a complex yet tractable system under an NMS framework. Recent use of the bryosphere as an NMS has shown how alterations in food web structure can affect ecosystem function in a manner that, although predicted by theory, has remained largely untested by experiment. An understanding of the biodiversity, ecosystem functioning, and adaptation of the bryosphere can be advanced by manipulative experiments coupled with a blend of techniques in molecular, physiological, community, and ecosystem ecology. Although studies described herein have demonstrated the utility of the bryosphere NMS for addressing ecological theory, the bryosphere is an underutilized system with exceptional promise.


aboveground belowground bryobiota bryophyte bryosphere cyanobacteria detrital food web global carbon budget natural model system mosses 



The encouraging comments from two anonymous reviewers and the editor greatly improved the manuscript. Z.L. and A.G. are supported by the National Sciences and Engineering Research Council of Canada. A.G. is also supported by the Canada Research Chair Program, and a team grant from Fonds Quebecois de la Recherche sur la Nature et les Technologies. We thank J. A. Whiteley, M. Pedruski, G. E. O’Farrill, and B. Rayfield for discussion, feedback, and helpful comments on earlier drafts.


  1. Adams DG, Duggan PS. 2008. Cyanobacteria—bryophyte symbioses. J Exp Bot 59:1047–58.PubMedCrossRefGoogle Scholar
  2. Adl SM. 2003. The ecology of soil decomposition. Wallingford, UK: CABI Publishing. p 335.CrossRefGoogle Scholar
  3. Allison SD, Martiny JBH. 2008. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105:11512–19.PubMedCrossRefGoogle Scholar
  4. Anderson OR. 2006. The density and diversity of gymnamoebae associated with terrestrial moss communities (Bryophyta:Bryopsida) in a northeastern US forest. J Eukaryot Microbiol 53:275–9.PubMedCrossRefGoogle Scholar
  5. Anderson OR. 2008. The role of amoeboid protists and the microbial community in moss-rich terrestrial ecosystems: biogeochemical implications for the carbon budget and carbon cycle, especially at higher latitudes. J Eukaryot Microbiol 55:145–50.PubMedCrossRefGoogle Scholar
  6. Ayres E, van der Wal R, Sommerkorn M, Bardgett RD. 2006. Direct uptake of soil nitrogen by mosses. Biol Lett 2:286–8.PubMedCrossRefGoogle Scholar
  7. Bardgett RD. 2005. The biology of soil: a community and ecosystem approach. Oxford, UK: Oxford University Press. p 242.Google Scholar
  8. Bardgett RD, Chan KF. 1999. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem 31:1007–14.CrossRefGoogle Scholar
  9. Behan-Pelletier VM, Bissett B. 1992. Biodiversity of nearctic soil arthropods. Can Biodivers 2:5–14.Google Scholar
  10. Behan-Pelletier VM, Bissett B. 1994. Oribatida of Canadian peatlands. Mem Entomol Soc Can 169:73–88.Google Scholar
  11. Benner JW, Vitousek PM. 2007. Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol Lett 10:628–36.PubMedCrossRefGoogle Scholar
  12. Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallen B. 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Change Biol 7:591–8.CrossRefGoogle Scholar
  13. Berg MP, Bengtsson J. 2007. Temporal and spatial variability in soil food web structure. Oikos 116:1789–804.CrossRefGoogle Scholar
  14. Birkemoe T, Liengen T. 2000. Does collembolan grazing influence nitrogen fixation by cyanobacteria in the high Arctic? Polar Biol 23:589–92.CrossRefGoogle Scholar
  15. Block W. 1982. The Signy Island terrestrial reference sites: XIV. Population studies on the collembola. Br Antarct Surv Bull 55:33–49.Google Scholar
  16. Boeckner M, Collins M, Finney-Crawley J, Bateman L. 2006. The bryofauna of remote coastal Labrador: including a review of current Canadian records. Zootaxa 1105:1–16.Google Scholar
  17. Bond-Lamberty B, Gower S. 2007. Estimation of stand-level leaf area for boreal bryophytes. Oecologia 151:584–92.PubMedCrossRefGoogle Scholar
  18. Bowden RD. 1991. Inputs, outputs, and accumulation of nitrogen in an early successional moss (Polytricum) ecosystem. Ecol Monogr 61:207–23.CrossRefGoogle Scholar
  19. Buck WR, Goffinet B. 2000. Morphology and classification of mosses. In: Shaw AJ, Goffinet B, Eds. Bryophyte biology. Cambridge: Cambridge University Press. p 71–123.Google Scholar
  20. Campioli M, Samson R, Michelsen A, Jonasson S, Baxter R, Lemeur R. 2009. Nonvascular contribution to ecosystem NPP in a subarctic heath during early and late growing season. Plant Ecol 202:1573–5052.CrossRefGoogle Scholar
  21. Carleton TJ, Dunham KMM. 2003. Distillation in a boreal mossy forest floor. Can J For Res (Revue Canadienne De Recherche Forestiere) 33:663–71.CrossRefGoogle Scholar
  22. Carleton TJ, Read DJ. 1991. Ectomycorrhizas and nutrient transfer in conifer feather moss ecosystems. Can J Bot (Revue Canadienne De Botanique) 69:778–85.CrossRefGoogle Scholar
  23. Chapin FS, Oechel WC, Van Cleve K, Lawrence W. 1987. The role of mosses in the phosphorus cycling of an Alaskan black spruce forest. Oecologia 74:310–15.CrossRefGoogle Scholar
  24. Chapin FS, McGuire AD, Randerson JT, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW. 2000. Arctic and boreal ecosystems of western North America as components of the climate system. Glob Change Biol 6:211–23.CrossRefGoogle Scholar
  25. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF. 1999. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–45.CrossRefGoogle Scholar
  26. Coleman DC, Reid CPP, Cole CV. 1983. Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55.CrossRefGoogle Scholar
  27. Coleman DC, Crossley DA, Hendrix PF. 2004. Fundamentals of soil ecology. Boston, USA: Elsevier Academic Press. p 386.Google Scholar
  28. Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ. 2007. Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001.PubMedCrossRefGoogle Scholar
  29. Cronberg N, Natcheva R, Hedlund K. 2006. Microarthropods mediate sperm transfer in mosses. Science 313:1255.PubMedCrossRefGoogle Scholar
  30. Davey ML, Currah RS. 2006. Interactions between mosses (Bryophyta) and fungi. Can J Bot (Revue Canadienne De Botanique) 84:1509–19.CrossRefGoogle Scholar
  31. Davis RC. 1981. Structure and function of two Antarctic terrestrial moss communities. Ecol Monogr 51:126–43.CrossRefGoogle Scholar
  32. de Ruiter PC, Vanveen JA, Moore JC, Brussaard L, Hunt HW. 1993. Calculation of nitrogen mineralization in soil food webs. Plant Soil 157:263–73.CrossRefGoogle Scholar
  33. de Ruiter PC, Neutel AM, Moore JC. 1998. Biodiversity in soil ecosystems: the role of energy flow and community stability. Appl Soil Ecol 10:217–28.CrossRefGoogle Scholar
  34. DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A. 2002. Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–20.PubMedCrossRefGoogle Scholar
  35. DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson M-C. 2007. Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia 152:121–30.PubMedCrossRefGoogle Scholar
  36. DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C. 2008. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181.PubMedCrossRefGoogle Scholar
  37. DeLucia EH, Turnbull MH, Walcroft AS, Griffiths KL, Tissue DT, Glenny D, McSeveny TM, Whitehead D. 2003. The contribution of bryophytes to the carbon exchange for a temperate rainforest. Glob Change Biol 9:1158–70.CrossRefGoogle Scholar
  38. Dise NB. 2009. Peatland response to global change. Science 326:810–11.PubMedCrossRefGoogle Scholar
  39. Döbbeler P. 1997. Biodiversity of bryophilous ascomycetes. Biodivers Conserv 6:721–38.CrossRefGoogle Scholar
  40. Douma JC, Van Wijk MT, Lang SI, Shaver GR. 2007. The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties. Plant, Cell Environ 30:1205–15.CrossRefGoogle Scholar
  41. Eckstein RL. 2000. Nitrogen retention by Hylocomium splendens in a subarctic birch woodland. J Ecol 88:506–15.CrossRefGoogle Scholar
  42. Eckstein RL, Karlsson PS. 1999. Recycling of nitrogen among segments of Hylocomium splendens as compared with Polytrichum commune: implications for clonal integration in an ectohydric bryophyte. Oikos 86:87–96.CrossRefGoogle Scholar
  43. Gentili F, Nilsson M-C, Zackrisson O, DeLuca TH, Sellstedt A. 2005. Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria. J Exp Bot 56:3121–7.PubMedCrossRefGoogle Scholar
  44. Gerson U. 1982. Bryophytes and invertebrates. In: Smith AJE, Ed. Bryophyte ecology. New York: Chapman and Hall. p 291–332.Google Scholar
  45. Gilbert FS, Gonzalez A, Evans-Freke I. 1998. Corridors maintain species richness in the fragmented landscapes of a microecosystem. Proc R Soc Lond Ser B 265:577–82.CrossRefGoogle Scholar
  46. Gonzalez A. 2000. Community relaxation in fragmented landscapes: the relation between species richness, area and age. Ecol Lett 3:441–8.CrossRefGoogle Scholar
  47. Gonzalez A, Chaneton EJ. 2002. Heterotrophic species extinction, abundance and biomass dynamics in an experimentally fragmented microecosystem. J Anim Ecol 71:594–602.CrossRefGoogle Scholar
  48. Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM, Evans-Freke I. 1998. Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281:2045–7.PubMedCrossRefGoogle Scholar
  49. Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–95.CrossRefGoogle Scholar
  50. Gornall JL, Jonsdottir IS, Woodin SJ, Van der Wal R. 2007. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–41.PubMedCrossRefGoogle Scholar
  51. Gotelli NJ. 2004. A taxonomic wish-list for community ecology. Trans R Soc Lond Ser B 359:585–97.CrossRefGoogle Scholar
  52. Goulden ML, Crill PM. 1997. Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiol 17:537–42.PubMedGoogle Scholar
  53. Harden JW, O’Neill KP, Trumbore SE, Veldhuis H, Stocks BJ. 1997. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest. J Geophys Res 102:28805–16.CrossRefGoogle Scholar
  54. Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, De Visser W, van Breemen N. 2001. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands. J Ecol 89:268–79.CrossRefGoogle Scholar
  55. Hilbert DW, Swift DM, Detling JK, Dyer MI. 1981. Relative growth rates and the grazing optimization hypothesis. Oecologia 51:14–18.CrossRefGoogle Scholar
  56. Hollingsworth TN, Schuur EAG, Chapin FS, Walker MD. 2008. Plant community composition as a predictor of regional soil carbon storage in Alaskan boreal black spruce ecosystems. Ecosystems 11:629–42.CrossRefGoogle Scholar
  57. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.CrossRefGoogle Scholar
  58. Hoyle M. 2004. Causes of the species-area relationship by trophic level in a field-based microecosystem. Proc R Soc Lond Ser B 271:1159–64.CrossRefGoogle Scholar
  59. Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliot ET, Moore JC, Rose SL, Reid CPP, Morley CR. 1987. The detrital food web in a shortgrass prairie. Biol Fertil Soils 3:57–68.CrossRefGoogle Scholar
  60. Hunt HW, Wall DH. 2002. Modelling the effects of loss of soil biodiversity on ecosystem function. Glob Change Biol 8:33–50.CrossRefGoogle Scholar
  61. Jönsson KI. 2003. Population density and species composition of moss-living tardigrades in a boreo-nemoral forest. Ecography 26:356–64.CrossRefGoogle Scholar
  62. Jonsson M, Wardle DA. 2010. Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems. Biol Lett 6:116–19.PubMedCrossRefGoogle Scholar
  63. Kauserud H, Mathiesen C, Ohlson M. 2008. High diversity of fungi associated with living parts of boreal forest bryophytes. Botany (Botanique) 86:1326–33.CrossRefGoogle Scholar
  64. Lagerström A, Nilsson M-C, Zackrisson O, Wardle DA. 2007. Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct Ecol 21:1027–33.CrossRefGoogle Scholar
  65. Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W, Aerts R. 2009. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97:886–900.CrossRefGoogle Scholar
  66. Lawton JH. 1999. Size matters. Oikos 85:19–21.CrossRefGoogle Scholar
  67. Lawton JH, Schröder D. 1977. Effects of plant type, size of geographical range and taxonomic isolation on number of insect species associated with British plants. Nature 265:137–40.CrossRefGoogle Scholar
  68. Lindegaard C, Thorup J, Bahn M. 1975. Invertebrate fauna of moss carpet in Danish spring Ravnkilde and its seasonal, vertical, and horizontal distribution. Arch Hydrobiol 75:109–39.Google Scholar
  69. Lindo Z. 2010. Communities of Oribatida associated with litter input in western redcedar tree crowns: are moss mats ‘magic carpets’ for oribatid mite dispersal? In: Sabelis MW, Bruin J, Eds. Trends in acarology: proceedings 12th international congress of acarology. Dordrecht: Springer. p 143–8.Google Scholar
  70. Lindo Z, Visser S. 2003. Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. Can J For Res 33:1610–20.CrossRefGoogle Scholar
  71. Lindo Z, Winchester NN. 2006. A comparison of microarthropod assemblages with emphasis on oribatid mites in canopy suspended soils and forest floors associated with ancient western redcedar trees. Pedobiologia 50:31–41.Google Scholar
  72. Lindo Z, Winchester NN. 2007. Local-regional boundary shifts in oribatid mite (Acari: Oribatida) communities: species-area relationships in arboreal habitat islands of a coastal temperate rainforest, Vancouver Island, Canada. J Biogeogr 34:1611–21.CrossRefGoogle Scholar
  73. Lindo Z, Winchester NN, Didham RK. 2008. Nested patterns of community assembly in the colonisation of artificial canopy habitats by oribatid mites. Oikos 117:1856–64.CrossRefGoogle Scholar
  74. Luxton M. 1972. Studies of the oribatid mites of a Danish beech wood soil. Pedobiologia 12:434–63.Google Scholar
  75. MacArthur RH, Wilson EO. 1967. The theory of island biogeography. Monographs in population biology. Princeton, NJ: Princeton University Press.Google Scholar
  76. Maraun M, Visser S, Scheu S. 1998. Oribatid mites enhance the recovery of the microbial community after strong disturbance. Appl Soil Ecol 9:175–81.CrossRefGoogle Scholar
  77. Markham JH. 2009. Variation in moss associative nitrogen fixation in boreal forests. Oecologia 161:353–9.PubMedCrossRefGoogle Scholar
  78. Materna J. 2000. Oribatid communities (Acari: Oribatida) inhabiting saxicolous mosses and lichens in the Krkonoše Mts (Czech Republic). Pedobiologia 44:40–62.CrossRefGoogle Scholar
  79. Matzek V, Vitousek P. 2003. Nitrogen fixation in bryophytes, lichens, and decaying wood along a soil-age gradients in Hawaiian montane rain forest. Biotropica 35:12–19.Google Scholar
  80. McNaughton SJ. 1979. Grazing as an optimization process—grass ungulate relationships in the Serengeti. Am Nat 113:691–703.CrossRefGoogle Scholar
  81. Menge DNL, Hedin LO. 2009. Nitrogen fixation in different biogeochemical niches along a 120 000-year chronosequence in New Zealand. Ecology 90:2190–201.PubMedCrossRefGoogle Scholar
  82. Merrifield K, Ingham RE. 1998. Nematodes and other aquatic invertebrates in Eurhynchium oreganum from Mary’s peak, Oregon Coast Range. Bryologist 101:505–11.Google Scholar
  83. Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, Johnson NC, McCann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH. 2004. Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600.CrossRefGoogle Scholar
  84. Moore JC, Walter DE, Hunt HW. 1988. Arthropod regulation of micro- and mesobiota in below-ground detrital food webs. Annu Rev Entomol 33:419–39.Google Scholar
  85. Moore TR, Dalva M. 2001. Some controls on the release of dissolved organic carbon by plant tissues and soils. Soil Sci 166:38–47.CrossRefGoogle Scholar
  86. Morén A-S, Lindroth A. 2000. CO2 exchange at the floor of a boreal forest. Agric For Meteorol 101:1–14.CrossRefGoogle Scholar
  87. Mulder CPH, Uliassi DD, Doak DF. 2001. Physical stress and diversity-productivity relationships: the role of positive interactions. Proc Natl Acad Sci USA 98:6704–8.PubMedCrossRefGoogle Scholar
  88. Neher DA, Lewins SA, Weicht TR, Darby BJ. 2009. Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. J Arid Environ 73:672–7.CrossRefGoogle Scholar
  89. Neutel AM, Heesterbeek JAP, de Ruiter PC. 2002. Stability in real food webs: weak links in long loops. Science 296:1120–3.PubMedCrossRefGoogle Scholar
  90. Oechel WC, Van Cleve K. 1986. The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K, Chapin FS, Flanagan PW, Viereck LA, Dyrness CT, Eds. Forest ecosystems in the Alaskan Taiga. New York: Springer-Verlag. p 122–37.Google Scholar
  91. Petersen H, Luxton M. 1982. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:287–388.Google Scholar
  92. Pokarzhevskii AD, van Straalen NM, Zaboev DP, Zaitsev AS. 2003. Microbial links and element flows in nested detrital food-webs. Pedobiologia 47:213–24.CrossRefGoogle Scholar
  93. Proctor MCF. 1982. Physiological ecology: water relations, light and temperature responses, carbon balance. In: Smith AJE, Ed. Bryophyte ecology. London: Chapman & Hall. p 333–81.Google Scholar
  94. Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Damste JSS, Lamers LPM, Roelofs JGM, op den Camp H, Strous M. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–6.PubMedCrossRefGoogle Scholar
  95. Rice SK, Aclander L, Hanson DT. 2008. Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am J Bot 95:1366–74.CrossRefGoogle Scholar
  96. Rosen R. 1991. Life itself: a comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.Google Scholar
  97. Salmane I, Brumelis G. 2008. The importance of the moss layer in sustaining biological diversity of Gamasina mites in coniferous forest soil. Pedobiologia 52:69–76.CrossRefGoogle Scholar
  98. Schatz H, Behan-Pelletier V. 2008. Global diversity of oribatids (Oribatida: Acari: Arachnida). Hydrobiologia 595:323–8.CrossRefGoogle Scholar
  99. Schimel JP, Gulledge J. 1998. Microbial community structure and global trace gases. Glob Change Biol 4:745–58.CrossRefGoogle Scholar
  100. Seastedt TR. 1984. The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46.CrossRefGoogle Scholar
  101. Seniczak S, Plichta W. 1978. Structural dependence of moss mite populations (Acari, Oribatei) on patchiness of vegetation in moss-lichen-tundra at north coast of Hornsund, West-Spitsbergen. Pedobiologia 18:145–52.Google Scholar
  102. Sillett SC, Antoine ME. 2004. Lichens and bryophytes in forest canopies. In: Lowman MD, Rinker HB, Eds. Forest canopies. 2nd edn. Amsterdam: Elsevier Academic Press. p 151–74.Google Scholar
  103. Solheim B, Zielke M. 2002. Associations between cyanobacteria and mosses. In: Rai AN, Bergman B, Rasmussen U, Eds. Cyanobacteria in symbiosis. Dordrecht: Kluwer Academic Publishers. p 137–52.Google Scholar
  104. Southwood TRE. 1996. Natural communities: structure and dynamics. Philos Trans R Soc Lond 351:1113–29.CrossRefGoogle Scholar
  105. Srivastava DS, Kolasa J, Bengtsson J, Gonzalez A, Lawler SP, Miller TE, Munguia P, Romanuk T, Schneider DC, Trzcinski MK. 2004. Are natural microcosms useful model systems for ecology? Trends Ecol Evol 19:379–84.PubMedCrossRefGoogle Scholar
  106. Staddon P, Lindo Z, Crittenden PD, Gilbert F, Gonzalez A. 2010. Connectivity, non-random extinction, and ecosystem function in experimental metacommunities. Ecol Lett 13:543–52.PubMedCrossRefGoogle Scholar
  107. Starzomski BM, Srivastava DS. 2007. Landscape geometry determines community response to disturbance. Oikos 116:690–9.CrossRefGoogle Scholar
  108. Suren AM. 1991. Bryophytes as invertebrate habitat in two New Zealand alpine streams. Freshw Biol 26:399–418.CrossRefGoogle Scholar
  109. Sveinbjornsson B, Oechel WC. 1991. Carbohydrate and lipid-levels in two Polytricum moss species growing on the Alaskan tundra. Holarctic Ecol 14:272–7.Google Scholar
  110. Swanson R, Flanagan L. 2001. Environmental regulation of carbon dioxide exchange at the forest floor in a boreal black spruce ecosystem. Agric For Meteorol 108:165–81.CrossRefGoogle Scholar
  111. Swift MJ, Heal OW, Anderson JM. 1979. Decomposition in terrestrial ecosystems. Oxford, UK: Blackwell Publishing.Google Scholar
  112. Swift MJ, Andren O, Brussaard L, Briones M, Couteaux M-M, Ekschmitt K, Kjoller A, Loiseau P, Smith P. 1998. Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Glob Change Biol 4:729–43.CrossRefGoogle Scholar
  113. Toet S, Cornelissen JHC, Aerts R, van Logtestijn RSP, de Beus MAH, Stoevelaar R. 2006. Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland. Plant Ecol 182:27–40.Google Scholar
  114. Turetsky MR. 2003. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409.CrossRefGoogle Scholar
  115. Turetsky MR, Wieder K, Halsey L, Vitt D. 2002. Current disturbance and the diminishing peatland carbon sink. Geophys Res Lett 29:21.1–4.CrossRefGoogle Scholar
  116. Usher MB, Booth RG. 1986. Arthropod communities in a maritime Antarctic moss-turf habitat: multiple scales of pattern in the mites and collembola. J Anim Ecol 55:155–70.CrossRefGoogle Scholar
  117. Van Cleve K, Dyrness CT, Viereck LA, Fox J, Chapin FS, Oechel W. 1983. Taiga ecosystems in interior Alaska. Bioscience 33:39–44.CrossRefGoogle Scholar
  118. Van Cleve K, Chapin FS, Flanagan PW, Viereck LA, Dyrness CT. 1986. Forest ecosystems in the Alaskan Taiga: a synthesis of structure and function. Berlin: Springer-Verlag.Google Scholar
  119. Van der Heijden E, Jauhiainen J, Silvola J, Vasander H, Kuiper PJC. 2000a. Effects of elevated atmospheric CO2 concentration and increased nitrogen deposition on growth and chemical composition of ombrotrophic Sphagnum balticum and oligo-mesotrophic Sphagnum papillosum. J Bryol 22:175–82.Google Scholar
  120. Van der Heijden E, Verbeek SK, Kuiper PJC. 2000b. Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Glob Change Biol 6:201–12.CrossRefGoogle Scholar
  121. Van der Putten WH, Bardgett RD, de Ruiter PC, Hol WHG, Meyer KM, Bezemer TM, Bradford MA, Christensen S, Eppinga MB, Fukami T, Hemerik L, Molofsky J, Schädler M, Scherber C, Strauss SY, Vos M, Wardle DA. 2009. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161:1–14.PubMedCrossRefGoogle Scholar
  122. Wall DH. 2007. Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem. Philos Trans R Soc B Biol Sci 362:2291–306.CrossRefGoogle Scholar
  123. Wall DH, Bradford MA, John MGS, Trofymow JA, Behan-Pelletier V, Bignell DDE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny L, Lin KC, Maryati M, Masse D, Pokarzhevskii A, Rahman H, Sabara MG, Salamon JA, Swift MJ, Varela A, Vasconcelos HL, White D, Zou XM. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob Change Biol 14:2661–77.Google Scholar
  124. Wallwork JA. 1983. Oribatid mites in forest systems. Annu Rev Entomol 28:109–30.CrossRefGoogle Scholar
  125. Wardle DA. 2002. Communities and ecosystems: linking the aboveground and belowground components. Princeton, NJ: Princeton University Press.Google Scholar
  126. Wardle DA, Verhoef HA, Clarholm M. 1998. Trophic relationships in the soil microfood-web: predicting the responses to a changing global environment. Glob Change Biol 4:713–27.CrossRefGoogle Scholar
  127. Wardle DA, Bonner KI, Barker GM. 2002. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–95.CrossRefGoogle Scholar
  128. Wardle DA, Yeates GW, Williamson W, Bonner KI. 2003. The response of a three trophic level soil food web to the identity and diversity of plant species and functional groups. Oikos 102:45–56.CrossRefGoogle Scholar
  129. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH. 2004. Ecological linkages between above and belowground biota. Science 304:1629–33.PubMedCrossRefGoogle Scholar
  130. White EP, Adler PB, Lauenroth WK, Gill RA, Greenberg D, Kaufman DM, Rassweiler A, Rusak JA, Smith MD, Steinbeck JR, Waide RB, Yao J. 2006. A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos 112:185–95.CrossRefGoogle Scholar
  131. Wiedermann MM, Gunnarsson U, Nilsson MB, Nordin A, Ericson L. 2009. Can small-scale experiments predict ecosystem responses? An example from peatlands. Oikos 118:449–56.CrossRefGoogle Scholar
  132. Wilson JA, Coxson DS. 1999. Carbon flux in a subalpine spruce-fir forest: pulse release from Hylocomium splendens feather-moss mats. Can J Bot (Revue Canadienne De Botanique) 77:564–9.CrossRefGoogle Scholar
  133. Wolters V, Silver WL, Bignell DE, Coleman DC, Lavelle P, Van der Putten WH, de Ruiter P, Rusek J, Wall DH, Wardle DA, Brussaard L, Dangerfield JM, Brown VK, Giller KE, Hooper DU, Sala O, Tiedje J, Van Veen JA. 2000. Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. Bioscience 50:1089–98.CrossRefGoogle Scholar
  134. Yanoviak SP, Walker H, Nadkarni NM. 2004. Arthropod assemblages in vegetative vs humic portions of epiphyte mats in a neotropical cloud forest. Pedobiologia 48:51–8.CrossRefGoogle Scholar
  135. Zackrisson O, DeLuca TH, Nilsson M-C, Sellstedt A, Berglund LM. 2004. Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–34.CrossRefGoogle Scholar
  136. Zielke M, Solheim B, Spjelkavik S, Olsen RA. 2005. Nitrogen fixation in the high arctic: role of vegetation and environmental conditions. Arct Antarct Alp Res 37:372–8.CrossRefGoogle Scholar
  137. Zotz G, Kahler H. 2007. A moss “canopy”—small-scale differences in microclimate and physiological traits in Tortuld ruralis. Flora 202:661–6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations