Advertisement

Ecosystems

, Volume 13, Issue 3, pp 459–471 | Cite as

Metabolic Imbalance in Coastal Vegetated (Posidonia oceanica) and Unvegetated Benthic Ecosystems

  • Eugenia T. Apostolaki
  • Marianne Holmer
  • Núria Marbà
  • Ioannis Karakassis
Article

Abstract

Community metabolism and dissolved organic and inorganic nutrient fluxes were assessed in impacted from fish farm discharges and reference vegetated (Posidonia oceanica) and adjacent unvegetated communities in the Aegean Sea, Greece. Both metabolism and nutrient fluxes significantly differed between impacted and reference communities, but the effect depended on community type and time of year. Net community production (NCP) in the impacted vegetated community decreased by 60%, respiration (R) by 34%, and gross primary production (GPP) by 44%. The GPP:R ratio declined more (35%) in the impacted unvegetated than in the corresponding vegetated community (15%), implying that proximity to the fish farm has a severe impact on the unvegetated community, leading to imbalanced metabolism (GPP < R) and heterotrophic (GPP:R = 0.9) conditions. Higher release of dissolved organic and inorganic carbon, nitrogen, and phosphorous was observed in the impacted vegetated community compared to the corresponding unvegetated one, implying intensification of mineralization in the seagrass community. On an annual scale, the impacted vegetated community supported increased DOC efflux by 204%, DON by 1639%, NH4 by 122%, and NO3 by 26%, whereas it supported release of DOP and PO4 compared to the reference community, which removed these dissolved nutrients from the water column. The impacted unvegetated community supported an annual increase of DOC efflux by 208% and PO4 by 42% and it released DON, NH4, NO3, and DOP, whereas the reference community took up these nutrients. Proximity to the fish farm altered the ecosystem state by lowering the productivity and by enhancing the nutrient release.

Keywords

eutrophication net community production nutrient cycling dissolved organic matter seagrass fish farming Mediterranean 

Notes

Acknowledgments

This study is part of the IBIS Project, co-financed by EU-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%). Thanks are due to T. Tsagaraki, I. Glabedakis, V. Pefanis-Vassilatos, N. Kouroubalis, V. Stasinos and S. Kiparissis for assistance with sampling; E. Dafnomili, S. Zivanovic, S. Iliakis, M. Anthoula, Y. Zachioti, A. Androni, E. Krasakopoulou, A. Pavlidou, and K. Giamalaki for assistance in chemical analyses; T. Wernberg, M. Thomsen, and M. Giannoulaki for helpful comments on statistical analysis; and two anonymous reviewers for criticism on the manuscript.

References

  1. Apostolaki ET. 2004. Fish farming effects on sediment and macrobenthic communities associated with bare sediments and Posidonia oceanica meadows in Eastern and Western Mediterranean. MSc thesis, University of Crete, 69 pp.Google Scholar
  2. Apostolaki ET, Tsagaraki T, Tsapakis M, Karakassis I. 2007. Fish farming impact on sediments and macrofauna associated with seagrass meadows in the Mediterranean. Estuar Coast Shelf Sci 75:408–16.CrossRefGoogle Scholar
  3. Apostolaki ET, Marba N, Holmer M, Karakassis I. 2009a. Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile. Estuar Coast Shelf Sci 81:390–400.CrossRefGoogle Scholar
  4. Apostolaki ET, Marba N, Holmer M, Karakassis I. 2009b. Fish farming impact on decomposition of Posidonia oceanica litter. J Exp Mar Biol Ecol 369:58–64.CrossRefGoogle Scholar
  5. Barron C, Duarte CM. 2009. Dissolved organic matter release in a Posidonia oceanica meadow. Mar Ecol Prog Ser 374:75–84.CrossRefGoogle Scholar
  6. Barron C, Marba N, Duarte CM, Pedersen MF, Lindblad C, Kersting K, Moy F, Bokn T. 2003. High organic carbon export precludes eutrophication responses in experimental rocky shore communities. Ecosystems 6:144–53.CrossRefGoogle Scholar
  7. Barron C, Marba N, Terrados J, Kennedy H, Duarte CM. 2004. Community metabolism and carbon budget along a gradient of seagrass (Cymodocea nodosa) colonization. Limnol Oceanogr 49:1642–51.Google Scholar
  8. Barron C, Duarte CM, Frankignoulle M, Borges AV. 2006. Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuar Coasts 29:417–26.Google Scholar
  9. Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqourean JW, Madden CJ. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol 93:148–58.CrossRefGoogle Scholar
  10. Burkholder JM, Tomasko DA, Touchette BW. 2007. Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72.CrossRefGoogle Scholar
  11. Calleja ML, Barron C, Hale JA, Frazer TK, Duarte CM. 2006. Light regulation of benthic sulfate reduction rates mediated by seagrass (Thalassia testudinum) metabolism. Estuar Coasts 29:1255–64.Google Scholar
  12. Christensen PB, Rysgaard S, Sloth NP, Dalsgaard T, Schwaerter S. 2000. Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquat Microb Ecol 21:73–84.CrossRefGoogle Scholar
  13. Dalsgaard T, Krause-Jensen D. 2006. Monitoring nutrient release from fish farms with macroalgal and phytoplankton bioassays. Aquaculture 256:302–10.CrossRefGoogle Scholar
  14. Deborde J, Abrill G, Mouret A, Jezequel D, Thouzeau G, Clavier J, Bachelet G, Anschutz P. 2008. Effects of seasonal dynamics in a Zostera noltii meadow on phosphorus and iron cycles in a tidal mudflat (Arcachon Bay, France). Mar Ecol Prog Ser 355:59–71.CrossRefGoogle Scholar
  15. Diaz-Almela E, Marba N, Alvarez E, Santiago R, Holmer M, Grau A, Danovaro R, Argyrou M, Karakassis I, Duarte CM. 2008. Benthic input rates predict seagrass (Posidonia oceanica) fish farm-induced decline. Mar Pollut Bull 56:1332–42.CrossRefPubMedGoogle Scholar
  16. Duarte CM. 2002. The future of seagrass meadows. Environmental Conservation 29:192–206.CrossRefGoogle Scholar
  17. Duarte CM, Cebrian J. 1996. The fate of marine autotrophic production. Limnol Oceanogr 41:1758–66.CrossRefGoogle Scholar
  18. Duarte CM, Agusti S, Gasol JM, Vaque D, Vazquez-Dominguez E. 2000. Effect of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. Mar Ecol Prog Ser 206:87–95.CrossRefGoogle Scholar
  19. Duarte CM, Martinez R, Barron C. 2002. Biomass, production and rhizome growth near the northern limit of seagrass (Zostera marina) distribution. Aquat Bot 72:183–9.CrossRefGoogle Scholar
  20. Duarte CM, Middelburg JJ, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8.CrossRefGoogle Scholar
  21. Erftemeijer PLA, Middelburg JJ. 1993. Sediment–nutrient interactions in tropical seagrass beds: a comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi (Indonesia). Mar Ecol Prog Ser 102:187–98.CrossRefGoogle Scholar
  22. Frederiksen M, Holmer M, Diaz-Almela E, Marba N, Duarte CM. 2007. Sulfide invasion in the seagrass Posidonia oceanica at Mediterranean fish farms: assessment using stable sulfur isotopes. Mar Ecol Prog Ser 345:93–104.CrossRefGoogle Scholar
  23. Gacia E, Duarte CM, Middelburg JJ. 2002. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47:23–32.CrossRefGoogle Scholar
  24. Gacia E, Kennedy H, Duarte CM, Terrados J, Marba N, Papadimitriou S, Fortes M. 2005. Light-dependence of the metabolic balance of a highly productive Philippine seagrass community. J Exp Mar Biol Ecol 316:55–67.CrossRefGoogle Scholar
  25. Gattuso JP, Frankignoulle M, Wollast R. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–34.CrossRefGoogle Scholar
  26. Gazeau F, Duarte CM, Gattuso J-P, Barrσn C, Navarro N, Ruiz S, Prairie YT, Calleja ML, Delille B, Frankignoulle M, Borges AV. 2005. Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences 2:43–60.CrossRefGoogle Scholar
  27. Hansen JW, Thamdrup B, Jorgensen BB. 2000. Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies. Mar Ecol Prog Ser 208:273–82.CrossRefGoogle Scholar
  28. Heijs SK, Azzoni R, Giordani G, Jonkers HM, Nizzoli D, Viaroli P, van Gemerden H. 2000. Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat Microb Ecol 23:85–95.CrossRefGoogle Scholar
  29. Hemminga MA, Duarte CM. 2000. Seagrass ecology. Cambridge, UK: Cambridge University Press. p 298.CrossRefGoogle Scholar
  30. Holmer M, Perez M, Duarte CM. 2003. Benthic primary producers—a neglected environmental problem in Mediterranean maricultures? Mar Pollut Bull 46:1372–6.CrossRefPubMedGoogle Scholar
  31. Holmer M, Duarte CM, Boschker HTS, Barron C. 2004. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol 36:227–37.CrossRefGoogle Scholar
  32. Holmer M, Carta C, Andersen FO. 2006. Biogeochemical implications for phosphorus cycling in sandy and muddy rhizosphere sediments of Zostera marina meadows (Denmark). Mar Ecol Prog Ser 320:141–51.CrossRefGoogle Scholar
  33. Holmer M, Frederiksen M. 2007. Stimulation of sulfate reduction rates in Mediterranean fish farm sediments inhabited by the seagrass Posidonia oceanica. Biogeochemistry 85:169–84.CrossRefGoogle Scholar
  34. Holmer M, Marba N, Diaz-Almela E, Duarte CM, Tsapakis M, Danovaro R. 2007. Sedimentation of organic matter from fish farms in oligotrophic Mediterranean assessed through bulk and stable isotope (δ13C and δ15N) analyses. Aquaculture 262:268–80.CrossRefGoogle Scholar
  35. Holmer M, Argyrou M, Dalsgaard T, Danovaro R, Diaz-Almela E, Duarte CM, Frederiksen M, Grau A, Karakassis I, Marba N, Mirto S, Perez M, Pusceddu A, Tsapakis M. 2008. Effects of fish farm waste on Posidonia oceanica meadows: synthesis and provision of monitoring and management tools. Mar Pollut Bull 56:1618–29.CrossRefPubMedGoogle Scholar
  36. Ivancic I, Deggobis D. 1984. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res 18:1143–7.CrossRefGoogle Scholar
  37. Jensen HS, McGlathery KJ, Marino R, Howarth RW. 1998. Forms and availability of sediment phosphorus in carbonate sand Bermuda seagrass beds. Limnol Oceanogr 43:799–810.CrossRefGoogle Scholar
  38. Karakassis I, Tsapakis M, Hatziyanni E. 1998. Seasonal variability in sediment profiles beneath fish farm cages in the Mediterranean. Mar Ecol Prog Ser 162:243–52.CrossRefGoogle Scholar
  39. Long MH, McGlathery KJ, Zieman JC, Berg P. 2008. The role of organic acid exudates in liberating phosphorus from seagrass-vegetated carbonate sediments. Limnol Oceanogr 53:2616–26.Google Scholar
  40. Lopez NI, Duarte CM, Vallespinos F, Romero J, Alcoverro T. 1998. The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. J Exp Mar Biol Ecol 224:155–66.CrossRefGoogle Scholar
  41. Marba N, Santiago R, Diaz-Almela E, Alvarez E, Duarte CM. 2006. Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish-farm-derived stress. Estuar Coast Shelf Sci 67:475–83.CrossRefGoogle Scholar
  42. Mateo MA, Romero J. 1997. Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151:43–53.CrossRefGoogle Scholar
  43. Mateo MA, Romero J, Perez M, Littler MM, Littler DS. 1997. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar Coast Shelf Sci 44:103–10.CrossRefGoogle Scholar
  44. McGlathery KJ, Sundback K, Anderson IC. 2007. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser 348:1–18.CrossRefGoogle Scholar
  45. Nixon SW. 1995. Coastal marine eutrophication—a definition, social causes, and future concerns. Ophelia 41:199–219.Google Scholar
  46. Oviatt CA, Rudnick DT, Keller AA, Sampou PA, Almquist GT. 1986. A comparison of system (O2 and CO2) and C-14 measurements of metabolism in estuarine mesocosms. Mar Ecol Prog Ser 28:57–67.CrossRefGoogle Scholar
  47. Pedersen AGU, Berntsen J, Lomstein BA. 1999. The effect of eelgrass decomposition on sediment carbon and nitrogen cycling: a controlled laboratory experiment. Limnol Oceanogr 44:1978–92.CrossRefGoogle Scholar
  48. Pedersen MF, Borum J. 1992. Nitrogen dynamics of eelgrass Zostera marrina during a late summer period of high growth and low nutrient availability. Mar Ecol Progr Ser 80:65–73.CrossRefGoogle Scholar
  49. Penhale PA, Smith WOJ. 1977. Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnol Oceanogr 22:400–7.CrossRefGoogle Scholar
  50. Perez M, Mateo MA, Alcoverro T, Romero J. 2001. Variability in detritus stocks in beds of the seagrass Cymodocea nodosa. Botanica Marina 44:523–31.CrossRefGoogle Scholar
  51. Perez M, Garcia T, Invers O, Ruiz JM. 2008. Physiological responses of the seagrass Posidonia oceanica as indicators of fish farm impact. Mar Pollut Bull 56:869–79.CrossRefPubMedGoogle Scholar
  52. Pergent-Martini C, Boudouresque C-F, Pasqualini V, Pergent G. 2006. Impact of fish farming facilities on Posidonia oceanica meadows: a review. Mar Ecol 27:310–19.CrossRefGoogle Scholar
  53. Pitta P, Apostolaki ET, Tsagaraki T, Tsapakis M, Karakassis I. 2006. Fish farming effects on chemical and microbial variables of the water column: a spatio-temporal study along the Mediterranean Sea. Hydrobiologia 563:99–108.CrossRefGoogle Scholar
  54. Pitta P, Tsapakis M, Apostolaki ET, Tsagaraki T, Holmer M, Karakassis I. 2009. ‘Ghost nutrients’ from fish farms are transferred up the food web by phytoplankton grazers. Mar Ecol Prog Ser 374:1–6.CrossRefGoogle Scholar
  55. Pusceddu A, Fraschetti S, Mirto S, Holmer M, Danovaro R. 2007. Effects of intensive mariculture on sediment biochemistry. Ecol Appl 17:1366–78.CrossRefPubMedGoogle Scholar
  56. Raimbault P, Pouvesle W, Diaz F, Garcia N, Sempere R. 1999. Wet-oxidation and automated colorimetry for simultaneous determination of organic carbon, nitrogen and phosphorus dissolved in seawater. Mar Chem 66:161–9.CrossRefGoogle Scholar
  57. Risgaard-Petersen N, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery KJ, Nielsen LP. 1998. Nitrogen balance of a temperate eelgrass Zostera marina bed. Mar Ecol Prog Ser 174:281–91.CrossRefGoogle Scholar
  58. Santos R, Silva J, Alexandre A, Navarro N, Barron C, Duarte CM. 2004. Ecosystem metabolism and carbon fluxes of a tidally-dominated coastal lagoon. Estuaries 27:977–85.CrossRefGoogle Scholar
  59. Silva J, Feijoo P, Santos R. 2008. Underwater measurements of carbon dioxide evolution in marine plant communities: a new method. Estuar Coast Shelf Sci 78:827–30.CrossRefGoogle Scholar
  60. Strickland JD, Parsons TR. 1972. A practical handbook of sea-water analysis. Bulletin of Fisheries Research Board of Canada 167:311.Google Scholar
  61. Stutes J, Cebrian J, Stutes AL, Hunter A, Corcoran AA. 2007. Benthic metabolism across a gradient of anthropogenic impact in three shallow coastal lagoons in NW Florida. Mar Ecol Prog Ser 348:55–70.CrossRefGoogle Scholar
  62. Sugimura Y, Suzuki Y. 1988. A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar Chem 24:105–31.CrossRefGoogle Scholar
  63. Thamdrup B, Canfield DE. 2000. Benthic respiration in aquatic sediments. In: Sala OE, Jackson RB, Mooney HA, Howarth RW, Eds. Methods in ecosystem science. New York: Springer. p 86–103.Google Scholar
  64. Velimirov B. 1986. DOC dynamics in a Mediterranean seagrass system. Mar Ecol Prog Ser 28:21–41.CrossRefGoogle Scholar
  65. Vizzini S, Sara G, Michener RH, Mazzola A. 2002. The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecol 23:277–85.CrossRefGoogle Scholar
  66. Yarbro LA, Carlson PR. 2008. Community oxygen and nutrient fluxes in seagrass beds of Florida Bay, USA. Estuar Coasts 31:877–97.CrossRefGoogle Scholar
  67. Ziegler S, Benner R. 1999a. Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Mar Ecol Prog Ser 180:149–60.CrossRefGoogle Scholar
  68. Ziegler S, Benner R. 1999b. Nutrient cycling in the water column of a subtropical seagrass meadow. Mar Ecol Prog Ser 188:51–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Eugenia T. Apostolaki
    • 1
    • 2
  • Marianne Holmer
    • 3
  • Núria Marbà
    • 4
  • Ioannis Karakassis
    • 2
  1. 1.Institute of Oceanography, Hellenic Centre for Marine ResearchHeraklionGreece
  2. 2.Marine Ecology Laboratory, Biology DepartmentUniversity of CreteHeraklionGreece
  3. 3.Institute of BiologyUniversity of Southern DenmarkOdense MDenmark
  4. 4.Department of Global ChangeInstitut Mediterrani d’Estudis Avançats (CSIC-UIB)Esporles (Illes Balears)Spain

Personalised recommendations