Advertisement

Ecosystems

, Volume 13, Issue 1, pp 144–156 | Cite as

Comparative Biogeochemical Cycles of Bioenergy Crops Reveal Nitrogen-Fixation and Low Greenhouse Gas Emissions in a Miscanthus × giganteus Agro-Ecosystem

  • Sarah C. Davis
  • William J. Parton
  • Frank G. Dohleman
  • Candice M. Smith
  • Stephen Del Grosso
  • Angela D. Kent
  • Evan H. DeLucia
Article

Abstract

We evaluated the biogeochemical cycling and relative greenhouse gas (GHG) mitigation potential of proposed biofuel feedstock crops by modeling growth dynamics of Miscanthus × giganteus Greef et Deuter (miscanthus), Panicum virgatum L. (switchgrass), Zea mays L. (corn), and a mixed prairie community under identical field conditions. DAYCENT model simulations for miscanthus were parameterized with data from trial plots in Europe and Illinois, USA. Switchgrass, corn, and prairie ecosystems were simulated using parameters published in the literature. A previously unknown source of nitrogen (N) was necessary to balance the plant nutrient budget in miscanthus crops, leading us to hypothesize that miscanthus growth depends on N-fixation. We tested for nitrogenase activity by acetylene reduction of whole rhizomes and bacteria isolated from the rhizosphere and miscanthus tissue. Our results supported the hypothesis that biological N-fixation contributed to the N demand of miscanthus, a highly productive perennial grass. Corn agro-ecosystems emit 956 to 1899 g CO2eq m−2y−1 greater GHGs (including CO2, N2O, CH4) to the atmosphere than the other biofuel crop alternatives because of greater N2O emissions from fertilizer additions. Of the feedstock crops evaluated in this study, miscanthus would result in the greatest GHG reduction.

Keywords

biofuel bioenergy carbon sequestration cellulosic corn DAYCENT ethanol prairie switchgrass soil carbon 

Notes

Acknowledgements

This research was funded by the Energy Biosciences Institute and the Department of Plant Biology, University of Illinois, Urbana-Champaign, Illinois, USA.

References

  1. Adler PR, Del Grosso SJ, Parton WJ. 2007. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17:675–91.CrossRefPubMedGoogle Scholar
  2. Anderson-Teixeira KJ, Davis SC, Masters MD, DeLucia EH. 2009. Changes in soil organic carbon under biofuel crops. Glob Change Biol Bioenergy 1:75–96.Google Scholar
  3. Baldani JI, Baldani VLD. 2005. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. Ann Braz Acad Sci 77:549–79.Google Scholar
  4. Beale CV, Bint DA, Long SP. 1996. Leaf photosynthesis in the C4-grass Miscanthus × giganteus, growing in the cool temperate climate of southern England. J Exp Bot 47:267–73.CrossRefGoogle Scholar
  5. Beale CV, Long S. 1995. Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–50.CrossRefGoogle Scholar
  6. Beale CV, Long SP. 1997. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus × giganteus and Spartina cynosuroides. Biomass Bioenergy 6:419–28.CrossRefGoogle Scholar
  7. Beuch S, Boelcke B, Belau L. 2000. Effects of the organic residues of Miscanthus × giganteus on the soil organic matter level of arable soils. J Agron Crop Sci 183:111–19.CrossRefGoogle Scholar
  8. Boddey RM, Urquiaga S, Alves BJR, Reis V. 2003. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–49.CrossRefGoogle Scholar
  9. Burris RH. 1994. Comparative study of the response of Azotobacter vinelandii and Acetobacter diazotrophicus to changes in pH. Protoplasma 183:62–6.CrossRefGoogle Scholar
  10. Chelius MK, Triplett EW. 2000. Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–7.CrossRefPubMedGoogle Scholar
  11. Chen W, Moulin L, Bontemps C, Vandamme P, Bena G, Boivin-Masson C. 2003. Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J Bacteriol 185:7266–72.CrossRefPubMedGoogle Scholar
  12. Christian DG, Riche AB, Yates NE. 2008. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–7.CrossRefGoogle Scholar
  13. Clifton-Brown JC, Lewandowski I. 2000. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–94.CrossRefGoogle Scholar
  14. Cosentino SL, Patane C, Sanzone E, Copani V, Foti S. 2007. Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu in a Mediterranean environment. Ind Crop Prod 25:75–88.CrossRefGoogle Scholar
  15. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–95.Google Scholar
  16. Danalatos NG, Archontoulis SV, Mitsios I. 2007. Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31:145–52.CrossRefGoogle Scholar
  17. David MB, Del Grosso S, Hu X, Marshall EP, McIsaac GF, Parton WJ, Tonitto C, Youseff MA. 2009. Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA. Biogeochemistry (in press). doi: 10.1007/s10533-10008-19273-10539
  18. Davis SC, Anderson-Teixeira KJ, DeLucia EH. 2009. Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–6.CrossRefPubMedGoogle Scholar
  19. Davis SC, Yannarell AC, Masters MD, Anderson-Teixeira KJ, Drake JE, Darmody RG, Mackie RI, David MB, DeLucia EH. Restoration of soil organic carbon with cultivation of perennial biofuel crops. Agr Ecosyst Environ, unpublished.Google Scholar
  20. Del Grosso S, Mosier AR, Parton WJ, Ojima DS. 2005. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res 83:9–24.CrossRefGoogle Scholar
  21. Del Grosso S, Ojima D, Parton WJ, Mosier AR, Peterson G, Schimel D. 2002. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environ Pollut 116:S75–83.CrossRefPubMedGoogle Scholar
  22. Del Grosso S, Ojima D, Parton WJ, Stehfest E, Heistemann M, Deangelo B, Rose S. 2009. Global scale DAYCENT model analysis of greenhouse gas mitigation strategies for cropped soils. Global Planet Change 67:44–50.CrossRefGoogle Scholar
  23. Del Grosso S, Parton WJ, Mosier AR, Hartman M, Brenner J, Ojima D, Schimel D. 2001. Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. In: Schaffer MJ, Ma L, Hansen S, Eds. Modeling carbon and nitrogen dynamics for soil management. Boca Raton: CRC Press. p 303–32.Google Scholar
  24. Dohleman FG, Heaton EA, Leakey ADB, Long SP. 2009. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of miscanthus relative to switchgrass? Plant Cell Environ 32:1525–37.CrossRefPubMedGoogle Scholar
  25. Dong ZM, Canny MJ, Mccully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R. 1994. A nitrogen-fixing endophyte of sugarcane stems—a new role for the apoplast. Plant Physiol 105:1139–47.PubMedGoogle Scholar
  26. Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26.PubMedGoogle Scholar
  27. EIA. 2008. International Energy Outlook 2008. Energy Information Administration.Google Scholar
  28. Field CB, Campbell JE, Lobell DB. 2007. Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72.CrossRefGoogle Scholar
  29. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Gunnar M, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Marquis M, Averyt KB, Tignor MMB, Miller HL, Chen Z, Eds. Climate change 2007: the physical science basis. Cambridge, UK: Cambridge University Press. Google Scholar
  30. Garten CT, Classen AT, Norby RJ, Brice DJ, Weltzin JF, Souza L. 2008. Role of N2-fixation in constructed old-field communities under different regimes of [CO2], temperature, and water availability. Ecosystems 11:125–37.CrossRefGoogle Scholar
  31. Haahtela K, Wartiovaara T, Sundman V, Skujins J. 1981. Root-associated N2 fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum strains in cold-climate spodosols. Appl Environ Microbiol 41:203–6.PubMedGoogle Scholar
  32. Heaton E, Dohleman FG, Long S. 2009. The impact of harvest time on nitrogen dynamics in Miscanthus and switchgrass. Glob Change Biol Bioenergy 1:297–307.Google Scholar
  33. Heaton E, Voigt T, Long S. 2004. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30.CrossRefGoogle Scholar
  34. Heaton EA, Dohleman FG, Long SP. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–14.CrossRefGoogle Scholar
  35. Kelly RH, Parton WJ, Hartman MD, Stretch LK, Ojima DS, Schimel DS. 2000. Intra-annual and interannual variability of ecosystem processes in shortgrass steppe. J Geophys Res 105:20093–100.CrossRefGoogle Scholar
  36. Lane DJ. 1991. 16S/23S rRNA sequencing. In: Stachebrandt E, Goodfellow M, Eds. Nucleic acid techniques in bacterial systematics. Chichester, UK: Wiley. Google Scholar
  37. Miguez FE, Villamil MB, Long SP, Bollero GA. 2008. Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. Agric For Meteorol 148:1280–92.CrossRefGoogle Scholar
  38. Miyamoto T, Kawahara M, Minamisawa K. 2004. Novel endophytic nitrogen-fixing Clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6.CrossRefPubMedGoogle Scholar
  39. Montañez A, Abreu C, Gill PR, Hardarson G, Sicardi M. 2009. Biological nitrogen fixation in maize (Zea mays L.) by 15N isotope-dilution and identification of associated culturable diazotrophs. Biol Fertil Soils 45:253–63.CrossRefGoogle Scholar
  40. Mulvaney RL, Khan SA, Ellsworth TR. 2005. Need for a soil-based approach in managing nitrogen fertilizers for profitable corn production. Soil Sci Soc Am 70:172–82.CrossRefGoogle Scholar
  41. Palus JA, Borneman J, Ludden PW, Triplett EW. 1996. A diazotrophic bacterial endophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil 186:135–42.CrossRefGoogle Scholar
  42. Parton WJ, Hartman M, Ojima D, Schimel D. 1998. DAYCENT and its land surface submodel: description and testing. Global Planet Change 19:35–48.CrossRefGoogle Scholar
  43. Parton WJ, Holland EA, Del Grosso S, Hartman M, Martin RE, Mosier AR, Ojima D, Schimel D. 2001. Generalized model for NOx and N2O emissions from soils. J Geophys Res 106:17403–20.CrossRefGoogle Scholar
  44. Parton WJ, Morgan JA, Wang G, Del Grosso S. 2007. Projected ecosystem impact of the Prairie Heating and CO2 enrichment experiment. New Phytol 174:823–34.CrossRefPubMedGoogle Scholar
  45. Parton WJ, Ojima DS, Cole CV, Schimel DS. 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Bryant RB, Arnold RW, Eds. Quantitative modeling of soil forming processes. Madison, WI: Soil Science Society of America. p 147–67.Google Scholar
  46. Pepper DA, Del Grosso S, McMurtrie RE, Parton WJ. 2005. Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input. Global Biogeochem Cycles 19:GB100. doi: 100.1029/2004GB002226.
  47. Robertson GP, Paul EA, Harwood RR. 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–5.CrossRefPubMedGoogle Scholar
  48. Rosch C, Bothe H. 2005. Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl Environ Microbiol 71:2026–35.CrossRefPubMedGoogle Scholar
  49. Sevilla M, Burris RH, Gunapala N, Kennedy C. 2001. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif-mutant strains. Am Phytopathol Soc 14:358–66.Google Scholar
  50. Tilman D, Hill J, Lehman C. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–600.CrossRefPubMedGoogle Scholar
  51. Triplett EW. 1996. Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38.CrossRefGoogle Scholar
  52. U.S.DOE. 2006. Breaking the biological barriers to cellulosic ethanol: a joint research agenda. In: Houghton J, Weatherwax S, Ferrell J, Eds. Biomass to biofuels workshop. MD: Rockville. p 206.Google Scholar
  53. Vogel KP, Brejda JJ, Walters DT, Buxton DR. 2002. Switchgrass biomass production in the midwest USA: harvest and nitrogen management. Agron J 94:413–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sarah C. Davis
    • 1
    • 2
  • William J. Parton
    • 3
  • Frank G. Dohleman
    • 2
  • Candice M. Smith
    • 4
  • Stephen Del Grosso
    • 5
  • Angela D. Kent
    • 4
    • 6
  • Evan H. DeLucia
    • 1
    • 2
    • 4
  1. 1.Institute of Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Natural Resources and Ecology LaboratoryColorado State UniversityFort CollinsUSA
  4. 4.Energy Biosciences InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.USDA Agricultural Research ServiceSoil Plant Nutrient ResearchFort CollinsUSA
  6. 6.Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations