Advertisement

Ecosystems

, Volume 13, Issue 1, pp 62–74 | Cite as

No Differences in Soil Carbon Stocks Across the Tree Line in the Peruvian Andes

  • Michael Zimmermann
  • Patrick Meir
  • Miles R. Silman
  • Anna Fedders
  • Adam Gibbon
  • Yadvinder Malhi
  • Dunia H. Urrego
  • Mark B. Bush
  • Kenneth J. Feeley
  • Karina C. Garcia
  • Greta C. Dargie
  • Wiliam R. Farfan
  • Bradley P. Goetz
  • Wesley T. Johnson
  • Krystle M. Kline
  • Andrew T. Modi
  • Natividad M. Q. Rurau
  • Brian T. Staudt
  • Flor Zamora
Article

Abstract

Reliable soil organic carbon (SOC) stock measurements of all major ecosystems are essential for predicting the influence of global warming on global soil carbon pools, but hardly any detailed soil survey data are available for tropical montane cloud forests (TMCF) and adjacent high elevation grasslands above (puna). TMCF are among the most threatened of ecosystems under current predicted global warming scenarios. We conducted an intensive soil sampling campaign extending 40 km along the tree line in the Peruvian Andes between 2994 and 3860 m asl to quantify SOC stocks of TMCF, puna grassland, and shrubland sites in the transition zone between the two habitats. SOC stocks from the soil surface down to the bedrock averaged (±standard error SE) 11.8 (±1.5, N = 24) kg C/m2 in TMCF, 14.7 (±1.4, N = 9) kg C/m2 in the shrublands and 11.9 (±0.8, N = 35) kg C/m2 in the grasslands and were not significantly different (P > 0.05 for all comparisons). However, soil profile analysis revealed distinct differences, with TMCF profiles showing a uniform SOC distribution with depth, shrublands a linear decrease, and puna sites an exponential decrease in SOC densities with soil depth. Organic soil layer thickness reached a maximum (~70 cm) at the upper limit of the TMCF and declined with increasing altitude toward puna sites. Within TMCF, no significant increase in SOC stocks with increasing altitude was observed, probably because of the large variations among SOC stocks at different sites, which in turn were correlated with spatial variation in soil depth.

Keywords

soil carbon stocks tropical montane cloud forest puna tree line 

Notes

Acknowledgments

This study is a product of the ABERG consortium (http://www.andesconservation.org). We thank the Blue Moon Fund and the Gordon and Betty Moore Foundation ‘Andes to Amazon’ Programme for support. We especially thank Manu National Park and the Peruvian Instituto Nacional de Recursos National (INRENA) and the Amazon Conservation Association (ACCA) for allowing access to their sites. Luis Imunda Gonzales and students from Wake Forest University and the Universidad San Antonio de Abad, Cusco were essential for the completion of this project.

References

  1. Arteaga A, Calderón GNE, Krasilnikov PV, Sedov SN, Targulian VO, Velázquez RN. 2008. Soil altitudinal sequence on base-poor parent material in a montane cloud forest in Sierra Juárez, southern Mexico. Geoderma 144:593–612.CrossRefGoogle Scholar
  2. Bernoux M, Cerri C, Arrouays D, Jolivet C, Volkoff B. 1998. Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Sci Soc Am J 62:743–9.Google Scholar
  3. Bush MB, Silman MR, Urrego DH. 2004. 48,000 years of climate and forest change in a biodiversity hotspot. Science 303:827–9.CrossRefPubMedGoogle Scholar
  4. Calhoun FG, Smeck NE, Slater BL, Bigham JM, Hall GF. 2001. Predicting bulk density of Ohio soils from morphology, genetic principles, and laboratory characterization data. Soil Sci Soc Am J 65:811–19.CrossRefGoogle Scholar
  5. Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–61.CrossRefPubMedGoogle Scholar
  6. Cramer W, Bondeau A, Schaphoff S, Lucht W, Smith B, Sitch S. 2004. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Tellus B 359:331–43.Google Scholar
  7. Foster P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci Rev 55:73–106.CrossRefGoogle Scholar
  8. Gräfe S, Hertel D, Leuschner C. 2008. Estimating fine root turnover in tropical forests along an elevational Transect using minirhizotrons. Biotropica 40:536–42.CrossRefGoogle Scholar
  9. Harris WN, Moretto AS, Distel RA, Boutton TW, Bóo RM. 2007. Fire and grazing in grasslands of the Argentine Caldenal: effects on plant and soil carbon and nitrogen. Acta Oecol 32:207–14.CrossRefGoogle Scholar
  10. Heuscher SA, Brandt CC, Jardine PM. 2005. Using soil physical and chemical properties to estimate bulk density. Soil Sci Soc Am J 69:51–6.Google Scholar
  11. Hofstede RGM. 1995. The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands. Plant Soil 173:111–32.CrossRefGoogle Scholar
  12. Houghton RA. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 55:378–90.CrossRefGoogle Scholar
  13. Janzen HH. 2004. Carbon cycling in earth systems—a soil science perspective. Agric Ecosyst Environ 104:399–417.CrossRefGoogle Scholar
  14. Jobbagy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–36.CrossRefGoogle Scholar
  15. Kok K, Verweij PA, Beukema H. 1995. Effects of cutting and grazing in Andean treeline vegetation. In: Churchill S, Balslev H, Forero E, Luteyn JL, Eds. Biodiversity and conservation of neotropical Monatne forests. New York: New York Botanical Garden. p 527–39.Google Scholar
  16. Körner C. 2007. The use of altitude in ecological research. Trends Ecol Evol 22:569–74.CrossRefPubMedGoogle Scholar
  17. Leifeld J, Bassin S, Fuhrer J. 2005. Carbon stocks in Swiss agricultural soils predicted by land-use, soil characteristics, and altitude. Agric Ecosyst Environ 105:255–66.CrossRefGoogle Scholar
  18. Li XG, Wang ZF, Ma QF, Li FM. 2007. Crop cultivation and intensive grazing affect organic C pools and aggregate stability in arid grassland soil. Soil Tillage Res 95:172–81.CrossRefGoogle Scholar
  19. Norby RJ, Luo Y. 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–93.CrossRefGoogle Scholar
  20. Post WM, Izaurralde RC, Mann LK, Bliss N. 2001. Monitoring and verifying changes of organic carbon in soil. Clim Change 51:73–99.CrossRefGoogle Scholar
  21. Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM. 2006. Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87.CrossRefPubMedGoogle Scholar
  22. Ramsay PM, Oxley ERB. 1996. Fire temperatures and postfire plant community dynamics in Ecuadorian grass páramo. Plant Ecol 124:129–44.Google Scholar
  23. Reeder JD, Schuman GE. 2002. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environ Pollut 116:457–63.CrossRefPubMedGoogle Scholar
  24. Sarmiento FO, Frolich LM. 2002. Andean cloud forest tree lines: naturalness, agriculture and the human dimension. Mt Res Dev 22:278–87.CrossRefGoogle Scholar
  25. Schawe M, Glatzel S, Gerold G. 2007. Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: podzolization vs. hydromorphy. Catena 69:83–90.CrossRefGoogle Scholar
  26. Schrumpf M, Guggenberger G, Valrezo C, Zech W. 2001. Development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes. Die Erde 132:43–59.Google Scholar
  27. Schulp CJE, Nabuurs GJ, Verburg PH, de Waal RW. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For Ecol Manag 256:482–90.CrossRefGoogle Scholar
  28. Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L. 2000. Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–82.CrossRefGoogle Scholar
  29. Soethe N, Lehmann J, Engels C. 2007. Carbon and nutrient stocks in roots of forests at different altitudes in the Ecuadorian Andes. J Trop Ecol 23:319–28.CrossRefGoogle Scholar
  30. Sombroek WG, Nachtergaele FO, Hebel A. 1993. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio 22:417–26.Google Scholar
  31. Tian G, Brussaard L, Kang BT. 1995. Breakdown of plant residues with contrasting chemical compositions under humid tropical conditions: effects of earthworms and millipedes. Soil Biol Biochem 27:277–80.CrossRefGoogle Scholar
  32. Townsend AR, Vitousek PM, Trumbore SE. 1995. Soil organic matter dynamics along gradients in temperature and land-use on the island of Hawaii. Ecology 76:721–33.CrossRefGoogle Scholar
  33. Trumbore S, da Costa ES, Nepstad DC, de Camargo PB, Martinelli L, Ray D, Restom T, Silver W. 2006. Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Glob Change Biol 12:217–29.CrossRefGoogle Scholar
  34. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature 416:389–95.CrossRefPubMedGoogle Scholar
  35. Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J. 2008. Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171:220–30.CrossRefGoogle Scholar
  36. Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana A. 2009a. Litter contribution to diurnal and annual soil respiration in a tropical montane cloud forest. Soil Biol Biochem 41:1338–40.CrossRefGoogle Scholar
  37. Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana A. 2009b. Climate dependence of heterotrophic soil respiration from a soil translocation experiment along a 3000 m altitudinal tropical forest gradient. Eur J Soil Sci. doi: 10.1111/j.1365-2389.2009.01175.x.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael Zimmermann
    • 1
  • Patrick Meir
    • 1
  • Miles R. Silman
    • 2
  • Anna Fedders
    • 2
  • Adam Gibbon
    • 3
  • Yadvinder Malhi
    • 3
  • Dunia H. Urrego
    • 4
  • Mark B. Bush
    • 4
  • Kenneth J. Feeley
    • 2
  • Karina C. Garcia
    • 2
    • 5
  • Greta C. Dargie
    • 1
  • Wiliam R. Farfan
    • 2
    • 5
  • Bradley P. Goetz
    • 2
  • Wesley T. Johnson
    • 2
  • Krystle M. Kline
    • 2
  • Andrew T. Modi
    • 2
  • Natividad M. Q. Rurau
    • 5
  • Brian T. Staudt
    • 2
  • Flor Zamora
    • 5
  1. 1.School of GeosciencesUniversity of EdinburghEdinburghUK
  2. 2.Department of BiologyWake Forest UniversityWinston SalemUSA
  3. 3.Environmental Change Institute, School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  4. 4.Department of Biological SciencesFlorida Institute of TechnologyMelbourneUSA
  5. 5.Universidad San Antonio AbadCuscoPeru

Personalised recommendations