, 12:807 | Cite as

Hydrology-Driven Regime Shifts in a Shallow Tropical Lake

  • Simoni Maria Loverde-Oliveira
  • Vera Lúcia Moraes Huszar
  • Nestor Mazzeo
  • Marten Scheffer


Shifts between alternative stable states have become a focus of research in temperate shallow lakes. Here we show that sharp transitions between a clear, macrophyte-dominated state and a turbid state without submerged plants can also occur in tropical floodplain lakes, albeit driven by a largely different set of mechanisms. We show how a shallow lake in the Pantanal becomes covered by an exploding population of the submerged macrophyte Egeria najas Planchon as the water level rises during the annual high-water period. Water clarity increases spectacularly in this period due to flushing with river water that has lost most of its suspended matter during its slow flow over the flooded vegetated plains. A few months later when the water level drops again, the submerged plant beds die and decompose rapidly, triggering a phase of increasing turbidity. During this period an increase in dissolved organic matter, suspended matter, and phytoplankton biomass results in a sharp deterioration in water clarity. The concomitant water level decrease largely counteracts the effects on the underwater light climate, so that the amount of light at the bottom may not differ in comparison with the high-water period. Therefore, changes in light climate seem unlikely to be the sole driver of the vegetation shifts, and other mechanisms may prevent recovery of the submerged vegetation until the next high-water episode. Also, contrary to what is found in temperate lakes, there is no evidence for top-down control of phytoplankton biomass associated with the macrophyte-dominated state in our tropical lake.


alternative states shallow lake Egeria najas phytoplankton macrophytes pantanal freshwater wetlands 



We thank Valdeci Antonio de Oliveira for help with the field collections, and Ibraim Fantin Cruz for help with the work involving the zooplankton community. We also thank FAPEMAT, NEPA/UFMT (Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES (Brazil), CSIC-UDELAR (Uruguay), and PEDECIBA (Uruguay), SNI-ANII for financial support. We also thank Patricia Mburucuyá and Juancito Carrau for their inspirational comments and suggestions; and finally Dr. Janet W. Reid (JWR Associates) for the revision of the English text.


  1. Adler M. 2002. Primärproduktion von Phytoplankton und Periphyton sowie Nährstofflimitation und-konkurrenz mit aquatischen Makrophyten im Pantanal, Mato Grosso (Brasilien), Ph.D Thesis, Universität Hamburg, HamburgGoogle Scholar
  2. APHA. 1992. Standard methods for examination of waste and wastewater. New York: American Public Health Association.Google Scholar
  3. Balls H, Moss B, Irvine K. 1989. The loss of submerged plants with eutrophication. I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broads. Freshwater Biology 22: 71-87.CrossRefGoogle Scholar
  4. Beklioglu M, Altinayar G, Tan CO. 2007. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archive für Hydrobiologie 166(4): 535–556.CrossRefGoogle Scholar
  5. Bini LM, Thomaz SM. 2005. Prediction of Egeria najas and Egeria densa occurrence in a large subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay). Aquatic Botany 83: 227-238.CrossRefGoogle Scholar
  6. Blindow I, Andersson G, Hargeby A, Johansson S. 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159-167.CrossRefGoogle Scholar
  7. Canfield DE, Shireman JV, Colle DE, Haller WT, Watkins CE, Maceina MJ. 1984. Prediction of chlorophyll-a concentrations in Florida lakes: importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 41: 497-501.CrossRefGoogle Scholar
  8. Cao T, Xie P, Ni LY, Wu AP, Zhang M, Wu SK, Smolders AJP. 2007. The role of NH4 + toxicity in the decline of the submersed macrophyte Vallisneria natans in lakes of the Yangtze River basin, China. Marine and Freshwater Research 58(6): 581-587.CrossRefGoogle Scholar
  9. Carignan R, Neiff JJ. 1992. Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by water hyacinth Eichhornia crassipes. Biogeochemistry 17: 85-121.CrossRefGoogle Scholar
  10. Carmouze JP. 1994. O metabolismo dos ecossistemas aquáticos. Fundamentos teóricos, métodos de estudo e análises químicas. São Paulo: Edgard Blücher, FAPESP.Google Scholar
  11. Carvalho P, Bini LM, Thomaz SM, Oliveira LG, Robertson B, Tavechio WLGD. 1991. Comparative limnology of South-American floodplain lakes and lagoons. Acta Scientiarum 23: 265-273.Google Scholar
  12. Edler L. 1979. Recommendations for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. UNESCO, Working Group 11, Baltic Marine Biologists, Stockholm: National Swedish Environmental Protection Board.Google Scholar
  13. Engel S, Nichols SA. 1994. Aquatic macrophyte growth in a turbid windswept lake. Journal of Freshwater Ecology 9: 97-109.Google Scholar
  14. Fantin-Cruz I, Loverde-Oliveira, SM, Girard P. 2008. Caracterização morfométrica e suas implicações na limnologia de lagoas do Pantanal Norte. Acta Scientiarum 30 (2): 133-140.Google Scholar
  15. Frutos SM, Poi de Neiff ASG, Neiff JJ. 2006. Zooplankton of the Paraguay River: a comparison between sections and hydrological phases. Annales de Limnologie - International Journal of Limnology 42(2): 277-288.CrossRefGoogle Scholar
  16. García de Emiliani MO. 1997. Effects of water level fluctuations on phytoplankton in a riverfloodplain lake system (Paraná River, Argentina). Hydrobiologia 357: 1–15.CrossRefGoogle Scholar
  17. Golterman HL, Clymo RS, Ohnstad MAM. 1978. Methods for chemical analysis of freshwater. Boston: IBP Handbook 8.Google Scholar
  18. Hargeby A, Blindow I, Hansson LA. 2004. Shifts between clear and turbid states in a shallow lake: multi-causal stress from climate, nutrients and biotic interactions. Archiv für Hydrobiologie 161: 433–454.CrossRefGoogle Scholar
  19. Huszar VLM, Reynolds CS. 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brazil). Hydrobiologia 346: 169-181.CrossRefGoogle Scholar
  20. Iglesias C, Mazzeo N, Goyenola G, Fosalba C, Teixeira-de-Mello F, García S, Jeppesen E. 2008. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous–planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797-1807.CrossRefGoogle Scholar
  21. Jeppesen E. 1998. The ecology of shallow lakes. Trophic interactions in the pelagial. Silkeborg: National Environmental Research Institute.Google Scholar
  22. Jeppesen E, Meerhoff M, Jacobsen BA, Hansen RS, Søndergaard M, Jensen JP, Lauridsen TL, Mazzeo N, Branco CWC. 2007a. Restoration of shallow lakes by nutrient control and biomanipulation the successful strategy varies with lake size and climate. Hydrobiologia 581: 269-285.CrossRefGoogle Scholar
  23. Jeppesen E, Søndergaard M, Pedersen AR, Jürgens K, Strzelczak A, Lauridsen TL, Johansson LS. 2007b. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10: 47-57.CrossRefGoogle Scholar
  24. Junk WJ. 2005. Flood pulsing and the linkages between terrestrial, aquatic, and wetland systems. Proceedings of the International Association of Theoretical and Applied Limnology 29: 11-38.Google Scholar
  25. Junk WJ, Piedade MTF. 1997. Plant life in the floodplain with special reference to herbaceous plants. Junk WJ, editor. The Central Amazonian Floodplain: Ecology of a Pulsing System. Berlin: Springer Verlag, p147-185.Google Scholar
  26. Junk WJ, Bayley PB, Sparks RG. 1989. The flood pulse concept in river floodplain system. Canadian Special Publication of Fisheries and Aquatic Sciences. 106: 110-127.Google Scholar
  27. Junk WJ, Cunha CN, Wantzen KM, Petermann P, Strüssmann C, Marques MI, Adis J. 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences 68: 278-309.CrossRefGoogle Scholar
  28. Li H, Cao T, Ni L. 2007. Effects of ammonium on growth, nitrogen and carbohydrate metabolism of Potamogeton maackianus A. Benn. Fundamental and Applied Limnology 170(2): 141-148.CrossRefGoogle Scholar
  29. Loverde-Oliveira SM. 1999. Variações limnológicas e análise temporal da comunidade fitoplanctônica da baía Sá Mariana, Pantanal de Barão de Melgaço, MT. MSc Dissertation, Universidade Federal de Mato Grosso, CuiabáGoogle Scholar
  30. Loverde-Oliveira SM. 2005. Implicações da complexidade hidrológica sobre padrões limnológicos na lagoa do Coqueiro, Pantanal de Mato Grosso: alternância de estados estáveis. PhD Thesis, Universidade Federal do Rio de Janeiro, Rio de JaneiroGoogle Scholar
  31. Loverde-Oliveira SM. Huszar, VLM. 2007. Phytoplankton ecological responses to the flood pulse in a Pantanal lake, Central Brazil. Brazil. Acta Limnologica Brasiliensia 19: 5-19.Google Scholar
  32. Loverde-Oliveira SM, Huszar VLM, Fantin-Cruz I. 2007. Implications of the flood pulse on morphometry of a Pantanal lake (Mato Grosso state, Central Brazil). Acta Limnologica Brasiliensia 19(4): 1-8.Google Scholar
  33. Lund JWG, Kipling C, Le Cren ED. 1958. The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11: 143-170.CrossRefGoogle Scholar
  34. Machado FA. 2003. História natural de peixes do Pantanal: com destaque em hábitos alimentares e defesas contra predadores. PhD Thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  35. Mackereth FJH, Heron J, Talling JF. 1978. Water analysis: some revised methods for limnologists. Scientific Publications of the Freshwater Biological Association 6:121pGoogle Scholar
  36. Mazzeo N, Rodríguez-Gallego L, Kruk C, Meerhoff M, Gorga J, Lacerot G, Quintans F, Loureiro M, Larrea D, García-Rodríguez F. 2003. Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506-509: 591-602.CrossRefGoogle Scholar
  37. McBride GB, Vant WN, Cloern JE, Liley JB. 1993. Development of a model of phytoplankton blooms in Manukau Harbour. NIWA Ecosystems 3: 1-52.Google Scholar
  38. McKinnon SL, Mitchell SF. 1994. Eutrophication and black swan (Cygnus atratus Latham) populations: tests of two simple relationships. Hydrobiologia 279-280: 163-170.CrossRefGoogle Scholar
  39. Meerhoff M, Clemente JM, Teixeira-de-Mello F, Iglesias C, Pedersen AR, Jeppesen E. 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888-1897.CrossRefGoogle Scholar
  40. Moss B, Madgewick J, Phillips G. 1996. A guide to the restoration of nutrient-enriched shallow lakes. Broads Authority/Environment AgencyGoogle Scholar
  41. Mourão GM. 1989. Limnologia comparativa de três lagoas (duas baías e uma salina) do Pantanal da Nhecolândia. MSc. Dissertation, Universidade Federal de São Carlos, São CarlosGoogle Scholar
  42. Neiff JJ. 1990. Ideas for the ecological interpretation of the Paraná river. Interciencias 15: 424-441.Google Scholar
  43. Nürnberg GK. 1996. Trophic state of clear and colored, soft and hard water lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake and Reservoir Management 12: 432-447.CrossRefGoogle Scholar
  44. Nusch EA, Palme G. 1975. Biologische Methoden für die Praxis der Gewässeruntersuchung. GWF-Wasser/Abwasser 116: 562-565.Google Scholar
  45. PCBAP (Programa Nacional do Meio Ambiente, Projeto Pantanal). 1997. Plano de conservação da bacia do Alto Paraguai. Diagnóstico dos meios físico e biótico. Brasília: MMA/PNMA. v.2Google Scholar
  46. Pelicice F, Agostinho A. 2006. Feeding ecology of fish associated with Egeria spp. Patches in a tropical reservoir, Brazil. Ecology of Freshwater Fish 15: 10-19.CrossRefGoogle Scholar
  47. Pelicice F, Agostinho A, Thomaz S. 2005. Fish assemblages associated with Egeria in a tropical reservoir: investigating the effect of plant biomass and diel period. Acta Oecologica 27: 9-16.CrossRefGoogle Scholar
  48. Perrow MR, Moss B, Stansfield J. 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading - A long-term study. Hydrobiologia 276: 43-52.CrossRefGoogle Scholar
  49. Ponce VM. 1995. Impacto hidrológico e ambiental da hidrovia Paraná-Paraguai no Pantanal Mato-grossense: um estudo de referência. San Diego: San Diego State University.Google Scholar
  50. Reynolds CS. 1999. Non-determinism to probability, or N:P in the community ecology of phytoplankton. Archiv für Hydrobiologie 146: 23-35.Google Scholar
  51. Rip WJ, Ouboter M, Beltman B, Van Nes EH. 2005. Oscillation of a shallow lake ecosystem upon reduction in external phosphorus load. Archiv für Hydrobiologie 164: 387-409.CrossRefGoogle Scholar
  52. Roozen FCJM, Peeters ETHM, Roijackers R, Wyngaert IVD, Wolters H, De Coninck H, Ibelings BW, Buijse AD, Scheffer M. 2008. Fast response of lake plankton and nutrients to river inundations on floodplain lakes. River Research and Applications 24: 388-406.CrossRefGoogle Scholar
  53. Salas HJ, Martino P. 1991. A simplified phosphorus trophic state model for warm tropical lakes. Water Research 25: 341-350.CrossRefGoogle Scholar
  54. Sanger AC. 1994. The role of macrophytes in the decline and restoration of Lagoon of Islands. Lake and Reservoir Management 9: 111-112.CrossRefGoogle Scholar
  55. Scheffer M. 1998. Ecology of Shallow Lakes, 1st Ed. London: Chapman and Hall.Google Scholar
  56. Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: linking theory to Observation. TRENDS in Ecology and Evolution 18: 648-656.CrossRefGoogle Scholar
  57. Scheffer M, Jeppesen E. 2007. Regime shifts in shallow lakes. Ecosystems 10: 1-3.CrossRefGoogle Scholar
  58. Scheffer M, van Nes EH. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455-466.CrossRefGoogle Scholar
  59. Schelske CL, Carrick HJ, Aldridge FJ. 1995. Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? Journal of the North American Benthological Society 14: 616-630.CrossRefGoogle Scholar
  60. Silva RL. 2002. Dinâmica espacial e produção primária do estande de Eichhornia azurea na baía do Coqueiro (Pantanal de Mato Grosso, Brasil). MSc. Dissertation, Universidade Federal de Mato Grosso, CuiabáGoogle Scholar
  61. Smith VH and Bennett SJ. 1999. Nitrogen:phosphorus supply ratios and phytoplankton community structure in lakes. Archiv für Hydrobiologie 146: 37-53.Google Scholar
  62. Sommer U. 1988. Some size relationships in phytoflagellated motility. Hydrobiologia 161: 125-131.CrossRefGoogle Scholar
  63. Teixeira JG, Tundisi JG, Kutner MB. 1965. Plankton studies in mangrove environment. II. The standing stock and some ecological factors. Boletim do Instituto Oceanográfico 24: 23-41.Google Scholar
  64. Teixeira-de-Mello F, Meerhoff M, Pekcan-hekim Z, Jeppesen E. 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshw Biol 54:1202–15CrossRefGoogle Scholar
  65. Thomaz S, Pagioro T, Bini L, Murphy K. 2006. Effect of reservoir drawdown of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53-59.CrossRefGoogle Scholar
  66. Train S, Rodrigues LC. 1998. Temporal fluctuations of the phytoplankton community of the Baía River, in the upper Paraná River floodplain, Mato Grosso do Sul, Brazil. Hydrobiologia 361: 125-134.CrossRefGoogle Scholar
  67. Uhelinger V. 1964. Étude statisque des méthodes de dénobrement planctonique. Archives des Sciences 17: 121-123.Google Scholar
  68. Utermöhl H 1958. Zur VervollKommung der quantitativen Phytoplankton – Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1-38.Google Scholar
  69. van der Heide T,· Smolders AJP, Rijkens BGA, van Nes EH, van Katwijk MM, Roelofs JGM. 2008. Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH. Oecologia 158: 411-419.PubMedCrossRefGoogle Scholar
  70. Van Geest GJ, Wolters H, Roozen F, Coops H, Roijackers RMM, Buijse AD, Scheffer M. 2005. Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia 539: 239-248.CrossRefGoogle Scholar
  71. Van Geest GJ, Coops H, Scheffer M, van Nes EH. 2007. Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels. Ecosystems 10: 37-47.CrossRefGoogle Scholar
  72. van Katwijk MM, Vergeer LHT, Schmitz GHW, Roelofs JGM. 1997. Ammonium toxicity in eelgrass Zostera marina. Marine Ecology Progress Series 157: 159-173.CrossRefGoogle Scholar
  73. van Nes EH, Scheffer M, Van den Berg MS, Coops H. 2003. Charisma: a spatial explicit simulation model of submerged macrophytes. Ecological Modelling 159: 103-116.CrossRefGoogle Scholar
  74. Vollenweider RA, Kerekes J. 1980. The loading concept as basis for controlling eutrophication: philosophy and preliminary results of the OECD programme on eutrophication. Progress in Water Technology 12: 5-38.Google Scholar
  75. Wallsten M, Forsgren PO. 1989. The effects of increased water level on aquatic macrophytes. Journal of Aquatic Plant Management 27: 32-37.Google Scholar
  76. Wantzen KM, Junk WJ, Rothhaupt KO. 2008. An extension of the floodpulse concept (FPC) for lakes. Hydrobiologia 613: 151-170.CrossRefGoogle Scholar
  77. Wetzel RG, Likens GE. 1991. Limnological analyses. New York: Springer-Verlag.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Simoni Maria Loverde-Oliveira
    • 1
  • Vera Lúcia Moraes Huszar
    • 2
  • Nestor Mazzeo
    • 3
  • Marten Scheffer
    • 4
  1. 1.Depto. Ciências BiológicasUniversidade Federal do Mato GrossoRondonópolisBrazil
  2. 2.Museu NacionalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Depto. de Ecología, Laboratorio de Ecología y Rehabilitación de Ecosistemas AcuáticosUniversidad de la RepúblicaMontevideoUruguay
  4. 4.Department of Aquatic Ecology and Water Quality ManagementAgricultural UniversityWageningenThe Netherlands

Personalised recommendations