, Volume 12, Issue 4, pp 654–671

Urbanization Alters Soil Microbial Functioning in the Sonoran Desert

  • S. J. Hall
  • B. Ahmed
  • P. Ortiz
  • R. Davies
  • R. A. Sponseller
  • N. B. Grimm


Cities can transform ecosystems in multiple ways, through modification of land use and land cover and through exposure to altered physical, chemical, and biological conditions characteristic of urban environments. We compared the multiple impacts of urbanization on microbial carbon (C) and nutrient cycling in ecosystems across Phoenix, Arizona, one of the fastest growing metropolitan areas in the USA. Land-use/land-cover change from desert to managed ecosystems altered soil microbial functioning, primarily through changes in organic matter supply. Although residential xeriscapes often feature native plants and patchy structure like deserts, spatial heterogeneity in soil biogeochemical cycling was not tightly linked to plant canopies. Grassy lawns exhibited higher nitrogen (N) and phosphorus demand by microorganisms than other landscape types, suggesting that high C quality may effectively sequester these nutrients during periods between fertilization events. Soils in native desert remnants exposed to the urban environment had higher organic matter content, but supported lower activities of extracellular peroxidase enzymes compared to outlying deserts. Experimental N enrichment of desert systems decreased peroxidase activities to a similar extent, suggesting that protected desert remnants within the city are receiving elevated N loads that are altering biogeochemical functioning. Although some microbial processes were spatially homogenized in urban desert remnants, resource islands associated with plants remain the dominant organizing factor for most soil properties. The extent to which native desert preserves within the city functionally resemble managed xeriscapes and lawns suggests that these remnant ecosystems are being ‘domesticated’ by exposure to the urban environment.


Sonoran Desert EEA peroxidase lawn xeriscape fragmented ecosystems 


  1. Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., Fernandez, I., 1998. Nitrogen saturation in temperate forests: Hypotheses revisited. Bioscience 48, 921-934.CrossRefGoogle Scholar
  2. Asner, G.P., Elmore, A.J., Olander, L.P., Martin, R.E., Harris, A.T., 2004. Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources 29, 261-299.CrossRefGoogle Scholar
  3. Atkinson-Palombo, C.M., Miller, J.A., Balling Jr., R.C., 2006. Quantifying the ozone ‘‘weekend effect’’ at various locations in Phoenix, Arizona. Atmospheric Environment 40 7644–7658.CrossRefGoogle Scholar
  4. Balakrishnan, V., Venkatesan, K., Ravindran, K.C., Kulandaivelu, G., 2007. Protective Mechanism in UV-B treated Crotalaria juncea L. seedlings Plant Protection Science 41, 115-120.Google Scholar
  5. Belser, L.W., 1979. Population ecology of nitrifying bacteria. Annual Review of Microbiology 33, 309-333.PubMedCrossRefGoogle Scholar
  6. Billings, S.A., Schaeffer, S.M., Zitzer, S., Charlet, T., Smith, S.D., Evans, R.D., 2002. Alterations of nitrogen dynamics under elevated carbon dioxide in an intact Mojave Desert ecosystem: evidence from nitrogen-15 natural abundance. Oecologia 131, 463–467.CrossRefGoogle Scholar
  7. Brazel AJ, Selover N, Vose R, Heisler G. 2000. The tale of two climates: Baltimore and Phoenix urban LTER sites. Clim Res 15:123–35.CrossRefGoogle Scholar
  8. Chung, H.G., Zak, D.R., Reich, P.B., Ellsworth, D.S., 2007. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology 13, 980-989.CrossRefGoogle Scholar
  9. Collins, S.L., Sinsabaugh, R.L., Crenshaw, C., Green, L., Porras-Alfaro, A., Stursova, M., Zeglin, L.H., 2008. Pulse dynamics and microbial processes in aridland ecosystems. Journal of Ecology 96, 413-420.CrossRefGoogle Scholar
  10. Davies, R., 2008. Soil nutrient pools and processes in Sonoran desert ecosystems across a gradient of human influence. School of Life Sciences. Arizona State University, Tempe.Google Scholar
  11. Faeth, S.H., Warren, P.S., Shochat, E., Marussich, W.A., 2005. Trophic dynamics in urban communities. Bioscience 55, 399-407.CrossRefGoogle Scholar
  12. Fenn, M.E., Haeuber, R., Tonnesen, G.S., Baron, J.S., Grossman-Clarke, S., Hope, D., Jaffe, D.A., Copeland, S., Geiser, L., Rueth, H.M., Sickman, J.O., 2003. Nitrogen Emissions, Deposition, and Monitoring in the Western United States. Bioscience 53, 391-403.CrossRefGoogle Scholar
  13. Fenn, M.E., Poth, M.A., Aber, J.D., Baron, J.S., Bormann, B.T., Johnson, D.W., Lemly, A.D., McNulty, S.G., Ryan, D.F., Stottlemyer, R., 1998. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Applications 8, 706-733.CrossRefGoogle Scholar
  14. Gallo, M.E., Sinsabaugh, R.L., Cabaniss, S.E., 2006. The role of ultraviolet radiation in litter decomposition in arid ecosystems. Applied Soil Ecology 34, 82–91.CrossRefGoogle Scholar
  15. Givoni, B., 1998. Chapter 7: General characteristics of the urban climate. Climate considerations in Building and Urban Design. Wiley, New York.Google Scholar
  16. Gober, P., 2006. Metropolitan Phoenix: Place Making and Community Building in the Desert. University of Pennsylvania Press, Philadelphia.Google Scholar
  17. Gregg, J., Jones, C., Dawson, T., 2003. Urbanization effects on tree growth in the vicinity of New York City. Nature 424, 183-187.PubMedCrossRefGoogle Scholar
  18. Grimm, N.B., Redman, C.L., 2004. Approaches to the study of urban ecosystems: the case of central Arizona-Phoenix. Urban Ecosystems 7, 199-213.CrossRefGoogle Scholar
  19. Groffman, P.M., Holland, E., Myrold, D.D., Robertson, G.P., Zou, X., 1999. Denitrification. In: Robertson, G.P., Bledsoe, C.S., Coleman, D.C., Sollins, P. (Eds.), Standard soil methods for long term ecological research. Oxford University Press, New York, pp. 272–288.Google Scholar
  20. Guillard, K., Kopp, K.L., 2004. Nitrogen fertilizer form and associated nitrate leaching from cool-season lawn turf. Journal of Environmental Quality 33, 1822-1827.PubMedGoogle Scholar
  21. Hall, S.J., Huber, D., Grimm, N.B., 2008. Soil N2O and NO emissions from an arid, urban ecosystem. J. Geophys. Res.-Biogeosci. 113, 11.Google Scholar
  22. Hart, S.C., Stark, J.M., Davidson, E.A., Firestone, M.K., 1994. Nitrogen mineralization, immobilization, and nitrification. In: SSSA (Ed.), Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties. Soil Science Society of America, Madison, WI, pp. 985-1018.Google Scholar
  23. Henry, H., Cleland, E., Field, C., Vitousek, P., 2005a. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142, 465-473.PubMedCrossRefGoogle Scholar
  24. Henry, H.A.L., Juarez, J.D., Field, C.B., Vitousek, P.M., 2005b. Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland Global Change Biology 11, 1808–1815.CrossRefGoogle Scholar
  25. Hickler, T., Smith, B., Prentice, I.C., Mjofors, K., Miller, P., Arneth, A., Sykes, M.T., 2008. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biology 14, 1531-1542.CrossRefGoogle Scholar
  26. Jenerette, G.D., Wu, J.G., 2001. Analysis and simulation of land-use change in the central Arizona-Phoenix region, USA. Landscape Ecology 16, 611-626.CrossRefGoogle Scholar
  27. Jin, V.L., Evans, R.D., 2007. Elevated CO2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. Global Change Biology 13, 452-465.CrossRefGoogle Scholar
  28. Johnsen, A.R., Karlson, U., 2007. Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation. Applied Microbiology and Biotechnology 76, 533–543.PubMedCrossRefGoogle Scholar
  29. Kaye, J.P., Burke, I.C., Mosier, A., Guerchman, J.P., 2004. Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecological Applications 14, 975-981.CrossRefGoogle Scholar
  30. Kaye, J.P., Majumdar, A., Gries, C., Hope, D., Grimm, N., Zhu, W., Baker, L., 2008. The spatial distribution of C, N, and P in a region of mixed urban, desert, and agricultural land use. Ecological Applications 18, 132-145.PubMedCrossRefGoogle Scholar
  31. Larsen, L., Harlan, S.L., 2006. Desert dreamscapes: Residential landscape preference and behavior. Landscape and Urban Planning 78, 85-100.CrossRefGoogle Scholar
  32. Larson, J.L., Zak, D.R., Sinsabaugh, R.L., 2002. Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Science Society of America Journal 66, 1848-1856.Google Scholar
  33. Lewis, D.B., Kaye, J.P., Gries, C., Kinzig, A.P., Redman, C.L., 2006. Agrarian legacy in soil nutrient pools of urbanizing arid lands. Global Change Biology 12, 703-709.CrossRefGoogle Scholar
  34. Lohse, K.A., Hope, D., Sponseller, R., Allen, J.O., Grimm, N.B., 2008. Atmospheric deposition of carbon and nutrients across an arid metropolitan area. Science of the Total Environment 402, 95-105.PubMedCrossRefGoogle Scholar
  35. Lucas, R.W., Casper, B.B., Jackson, J.K., Balser, T.C., 2007. Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands. Soil Biology & Biochemistry 39, 2508–2519.CrossRefGoogle Scholar
  36. Martinez-Yrizar, A., Nunez, S., Miranda, HAB., 1999. Temporal and spatial variation of litter production in Sonoran Desert communities. Plant Ecology 145, 37-48.CrossRefGoogle Scholar
  37. McAuliffe, J.R., 1994. Landscape evolution, soil formation, and ecological patterns and processes in Sonoran Desert bajadas. Ecological Monographs 64, 111-148.CrossRefGoogle Scholar
  38. McCrackin, M.L., Harms, T.K., Grimm, N.B., Hall, S.J., Kaye, J.P., 2008. Responses of microbes to resource availability in urban, desert soils. Biogeochemistry 87, 143–155.CrossRefGoogle Scholar
  39. McDonald, R.I., Kareiva, P., Formana, R.T.T., 2008. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biological Conservation 141, 1695-1703.CrossRefGoogle Scholar
  40. Menge, D.N.L., Field, C.B., 2007. Simulated global changes alter phosphorus demand in annual grassland. Global Change Biology 13, 2582-2591.CrossRefGoogle Scholar
  41. Milesi, C., Running, S.W., Elvidge, C.D., Dietz, J.B., Tuttle, B.T., Nemani, R.R., 2005. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environmental Management 36, 426-438.PubMedCrossRefGoogle Scholar
  42. Miller CD, Rangel D, Braga GUL, Flint S, Kwon S-I, Messias CL, Roberts DW, Anderson AJ. 2004. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation. Can J Microbiol 50:41–9Google Scholar
  43. Moritz C, Hutchins J, Knowles-Yanez K, Bucchin M, McMartney PH, Redman CL. 1998. Landuse classification 1912, 1934, 1955, 1975, and 1995.
  44. NOAA. 2001. Comparative climatic dataGoogle Scholar
  45. Noy-Meir, I., 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics 4, 25–51.CrossRefGoogle Scholar
  46. Ontiveros-Valencia A, Stutz JC. 2009. Arbuscular mycorrhizal fungal and dark septate endophyte colonization of plant roots from urban desert preserves and surrounding deserts. 11th Annual CAP LTER Poster Symposium, Tempe, AZGoogle Scholar
  47. Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51, 1173-1179.Google Scholar
  48. Phillips, D., Johnson, M., Tingey, D., Catricala, C., Hoyman, T., Nowak, R., 2006. Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: a FACE study. Global Change Biology 12, 61–73.CrossRefGoogle Scholar
  49. Rabinovich, M.L., Bolobova, A.V., Vasil’chenko, L.G., 2004. Fungal decomposition of natural aromatic structures and xenobiotics: A review. Applied Biochemistry and Microbiology 40, 1–17.CrossRefGoogle Scholar
  50. Randa, L., Yunger, J., 2006. Carnivore occurrence along an urban-rural gradient: A landscape-level analysis. Journal of Mammalogy 87, 1154-1164.CrossRefGoogle Scholar
  51. Redman CL, Hutchins J, Kunda R. 2005. Landuse classification 2000.
  52. Reich, P.B., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M.G., Knops, J., Wedin, D., Naeem, S., Bahauddin, D., Goth, J., Bengtson, W., Lee, T.D., 2001. Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist 150, 435–448.CrossRefGoogle Scholar
  53. Reynolds, J., Virginia, R., Kemp, P., de Soyza, A., Tremmel, D., 1999. Impact of drought on desert shrubs: effects of seasonality and degree of resource island development. Ecological Monographs 69, 69–106.CrossRefGoogle Scholar
  54. Robbins, P., Birkenholtz, T., 2003. Turfgrass revolution: measuring the expansion of the American lawn. Land Use Policy 20, 181-194.CrossRefGoogle Scholar
  55. Robinson, J.G., 2006. Conservation biology and real-world conservation. Conservation Biology 20, 658-669.PubMedCrossRefGoogle Scholar
  56. Rytwinski, T., Fahrig, L., 2007. Effect of road density on abundance of white-footed mice. Landscape Ecology 22, 1501-1512.CrossRefGoogle Scholar
  57. Schaeffer, S.M., Billings, S.A., Evans, R.D., 2003. Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia 134, 547–553.PubMedGoogle Scholar
  58. Schaeffer SM, Billings SA, Evans RD. 2007a. Laboratory incubations reveal potential responses of soil nitrogen cycling to changes in soil C and N availability in Mojave Desert soils exposed to elevated atmospheric CO2. Glob Chang Biol 13:854–65Google Scholar
  59. Schaeffer, S.M., Billings, S.A., Evans, R.D., 2007b. Laboratory incubations reveal potential responses of soil nitrogen cycling to changes in soil C and N availability in Mojave Desert soils exposed to elevated atmospheric CO2. Global Change Biology 13, 854-865.Google Scholar
  60. Schlesinger, W.H., Hasey, M.M., 1980. The nutrient content of precipitation, dry fallout, and intercepted aerosols in the chaparral of southern California. American Midland Naturalist 103, 114-122.CrossRefGoogle Scholar
  61. Schlesinger, W.H., Reynolds, J.F., Cunningham, G.L., Huenneke, L.H., Jarrell, W.M., Virginia, R.A., Whitford, W.G., 1990. Biological feedbacks in global desertification. Science 247, 1043-1048.PubMedCrossRefGoogle Scholar
  62. Seinfeld, J., 1989. Urban air pollution - State of the Science. Science 243, 745-752.PubMedCrossRefGoogle Scholar
  63. Shaw, M.R., Harte, J., 2001. Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Global Change Biology 7, 193-210.CrossRefGoogle Scholar
  64. Shen, W., Wu, J., Grimm, N.B., Hope, D., 2008. Effects of urbanization-induced environmental changes on ecosystem functioning in the Phoenix Metropolitan Region, USA. Ecosystems 11, 138–155.CrossRefGoogle Scholar
  65. Shen, W., Wu, J., Kemp, P.R., Reynolds, J.F., Grimm, N.B., 2005 Simulating the dynamics of primary productivity of a Sonoran ecosystem: Model parameterization and validation. Ecological Modeling 189, 1–24.CrossRefGoogle Scholar
  66. Shochat, E., Lerman, S.B., Katti, M., Lewis, D.B., 2004. Linking optimal foraging behavior to bird community structure in an urban-desert landscape: Field experiments with artificial food patches. American Naturalist 164, 232-243.PubMedCrossRefGoogle Scholar
  67. Sinsabaugh, R.L., Carreiro, M.M., Alvarez, S., 2002a. Enzyme and microbial dynamics during litter decomposition. In: Burns, R.G., Dick, R.P. (Eds.), Enzymes in the Environment: Activity, Ecology, and Applications. CRC Press, New York, pp. 249-266.Google Scholar
  68. Sinsabaugh, R.L., Carreiro, M.M., Repert, D.A., 2002b. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60, 1-24.CrossRefGoogle Scholar
  69. Sinsabaugh, R.L., Gallo, M.E., Lauber, C., Waldrop, M.P., Zak, D.R., 2005. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75, 201-215.CrossRefGoogle Scholar
  70. Sinsabaugh, R.L., Lauber, C.L., Weintraub, M., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., Gartner, T.B., Hobbie, S.E., Holland, K., Keeler, B.L., Powers, J.S., Stursova, M., Takacs-Vesbach, C., Waldrop, M., Wallenstein, M., Zak, D.R., Zeglin, L.H., 2008. Stoichiometry of soil enzyme activity at the global scale. Ecology Letters 11, 1252–1264.PubMedGoogle Scholar
  71. Sponseller, R., Fisher, S., 2008. The influence of drainage networks on patterns of soil respiration in a desert catchment. Ecology 89, 1089-1100.PubMedCrossRefGoogle Scholar
  72. Stursova, M., Crenshaw, C.L., Sinsabaugh, R.L., 2006. Microbial responses to long-term N deposition in a semiarid grassland. Microbial Ecology 51, 90–98.PubMedCrossRefGoogle Scholar
  73. Stursova M, Sinsabaugh RL. 2008. Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation. Soil Biol Biochem 40:550–3.CrossRefGoogle Scholar
  74. U.S. Census Bureau. 2007. United States Census. United States Department of CommerceGoogle Scholar
  75. Valencia-Islas, N., Zambrano, A., Rojas, J.L., 2007. Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City. Journal of Chemical Ecology 33, 1619-1634.PubMedCrossRefGoogle Scholar
  76. Virginia, R.A., Jarrell, W.M., 1983. Soil properties in a mesquite dominated Sonoran Desert ecosystem. Soil Science Society of America Journal 47, 138–144.Google Scholar
  77. Waldrop, M.P., Zak, D.R., 2006. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9, 921-933.CrossRefGoogle Scholar
  78. Wallenstein, M.D., McNulty, S., Fernandez, I.J., Boggs, J., Schlesinger, W.H., 2006. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management 222, 459-468.CrossRefGoogle Scholar
  79. Welter, J.R., Fisher, S.G., Grimm, N.B., 2005. Nitrogen transport and retention in an arid land watershed: Influence of storm characteristics on terrestrial-aquatic linkages. Biogeochemistry 76, 421-440.CrossRefGoogle Scholar
  80. Wentz, E., Gober, P., Balling, R., Day, T., 2002. Spatial patterns and determinants of winter atmospheric carbon dioxide concentrations in an urban environment. Annals of the Association of American Geographers 92, 15-28.CrossRefGoogle Scholar
  81. Wentz, E.A., Stefanov, W.L., Gries, C., Hope, D., 2006. Land use and land cover mapping from diverse data sources for an and urban environments. Computers, Environment, and Urban Systems 30, 320-346.CrossRefGoogle Scholar
  82. Western, D., 2000. Conservation in a human dominated world. Issues Sci. Technol. 16, 53-60.Google Scholar
  83. Woodbury, R.B., 1960. The Hohokam Canals at Pueblo Grande, Arizona. American Antiquity 26, 267–270.CrossRefGoogle Scholar
  84. Zak, D.R., Holmes, W.E., Finzi, A.C., Norby, R.J., Schlesinger, W.H., 2003. Soil nitrogen cycling under elevated CO2: A synthesis of forest face experiments. Ecological Applications 13, 1508-1514.CrossRefGoogle Scholar
  85. Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL. 2007. Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154:349–59.PubMedCrossRefGoogle Scholar
  86. Zhu, W., Dillard, N.D., Grimm, N.B., 2004. Urban nitrogen biogeochemistry: status and processes in green retention basins. Biogeochemistry 71, 177-196.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. J. Hall
    • 1
  • B. Ahmed
    • 1
  • P. Ortiz
    • 1
  • R. Davies
    • 1
  • R. A. Sponseller
    • 2
  • N. B. Grimm
    • 1
  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.Department of Biological SciencesUniversity of AlabamaTuscaloosaUSA

Personalised recommendations