, Volume 12, Issue 4, pp 517–533 | Cite as

Modeling the Sensitivity of the Seasonal Cycle of GPP to Dynamic LAI and Soil Depths in Tropical Rainforests

  • Benjamin Poulter
  • Ursula Heyder
  • Wolfgang Cramer


The seasonality of pan-tropical wet forests has been highlighted by recent remote sensing and eddy flux measurements that have recorded both increased and sustained dry-season gross primary productivity (GPP). These observations suggest that wet tropical forests are primarily light limited and that the mechanisms for resilience to drought and projected climate change must be considered in ecosystem model development. Here we investigate two proposed mechanisms for drought resilience of tropical forests, deep soil water access and the seasonality of phenology, using the LPJmL Dynamic Global Vegetation Model. We parameterize a new seasonal phenology module for tropical evergreen trees using remotely sensed leaf area index (LAI) and incoming solar radiation data from the Terra Earth Observing System. Simulations are evaluated along a gradient of dry-season length (DSL) in South America against MODIS GPP estimates. We show that deep soil water access is critical for maintaining dry-season GPP, whereas implementing a seasonal LAI did not enhance simulated dry-season GPP. The Farquhar-Collatz photosynthesis scheme used in LPJmL optimizes leaf nitrogen allocation according to light conditions, causing maximum photosynthetic capacity in the dry season. High LAI, characteristic of tropical forests, also dampens the seasonal amplitude of the fraction of photosynthetically active radiation (FPAR). Given the relatively high uncertainty in tropical phenology observations and their corresponding proximate drivers, we recommend that ecosystem model development focus on belowground processes. An improved representation of soil depths and rooting distributions is necessary for modeling the dynamics of dry-season tropical forest functioning and may have important impacts for modeling tropical forest vulnerability to climate change.

Key words

drought ecosystem processes LPJmL MODIS Vcmax photosynthesis 



We acknowledge Marlies Gumpenberger, Fanny Langerwisch, Wolfgang Lucht, Anja Rammig, Paul Stoy, Kirsten Thonicke, and two anonymous reviewers for helpful comments and suggestions. We would like to thank the Distributed Active Archive Center at the Oak Ridge National Laboratory for making the MODIS Selected Sites product available. Funding was provided by the EU Marie Curie Research Training Network GREENCYCLES (MRTN-CT-2004-512464).


  1. Araújo, AC, Nobre AD, Kruijt B, Elbers JA, Dallarosa R, Stefani P, von Randow C, Manzi AO, Culf AD, Gash JHC, Valentini R, Kabat P. 2002. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site. J Geophys Res 107. doi: 10.1029/2001JD000676
  2. Arora, VK, GJ Boer. 2005. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology 11:39-59CrossRefGoogle Scholar
  3. Baker IT, Prihodko L, Denning AS, Goulden ML, Miller SD, da Rocha HR. 2008. Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res 113:G00B01. doi: 10.1029/2007JG000644 CrossRefGoogle Scholar
  4. Betts RA, PM Cox, M Collins, PP Harris, C Huntingford, CD Jones. 2004. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global warming. Theoretical and Applied Climatology 78:157-175CrossRefGoogle Scholar
  5. Bondeau A, PC Smith, S Zaehle, S Schaphoff, W Lucht, W Cramer, D Gerten, H Lotze-Campen, C Muller, M Reichstein, and B Smith. 2007. Modelling the role of agriculture for the 20th century global carbon balance. Global Change Biology 13:679-706CrossRefGoogle Scholar
  6. Botta A, N Viovy, P Ciais, P Friedlingstein, and P Monfray. 2000. A global prognostic scheme of leaf onset using satellite data. Global Change Biology 6:709-725CrossRefGoogle Scholar
  7. Bruno RD, HR da Rocha, HC de Freitas, ML Goulden, and SD Miller. 2006. Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrological Processes 20:2477-2489CrossRefGoogle Scholar
  8. Canadell JG, RB Jackson, JR Ehleringer, HA Mooney, OE Sala, and ED Schulze. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583-595CrossRefGoogle Scholar
  9. Carswell FE, Costa AL, Palheta M, Malhi Y, Meir P, Costa JdPR, Ruivo MdL, Leal LdSM, Costa JMN, Clement RJ, Grace J. 2002. Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest. J Geophys Res 107. doi: 10.1029/2000JD000284
  10. Collatz GJ, JT Ball, C Grivet, and JA Berry. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54:107-136CrossRefGoogle Scholar
  11. Corlett R. 1987. Leaf phenology in tropical trees. Biotropica 31:133-138Google Scholar
  12. Costa MH, and JA Foley. 2000. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. Journal of Climate 13:18-34CrossRefGoogle Scholar
  13. Cox PM, RA Betts, M Collins, PP Harris, C Huntingford, and CD Jones. 2004. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology 78:137-156CrossRefGoogle Scholar
  14. Cox PM, PP Harris, C Huntingford, RA Betts, M Collins, CD Jones, TE Jupp, JA Marengo, and CA Nobre. 2008. Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212-216PubMedCrossRefGoogle Scholar
  15. Cramer W, A Bondeau, S Schaphoff, W Lucht, B Smith, and S Sitch. 2004. Tropical forests and the global carbon cycle: Impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society of London 359:331-343CrossRefGoogle Scholar
  16. da Rocha HR, R Freitas, R Rosolem, RIN Juarez, RN Tannus, MA Ligo, OMR Cabral, and MAF Silva Dias. 2002. Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brazil. Biota Neotropica 2:1-10Google Scholar
  17. de Negreiros GH, Nepstad DC. 1994. Mapping deeply rooting forests of Brazilian Amazonia with GIS. Proceedings of ISPRS commission VII symposium—resource and environmental monitoring 7:334–8Google Scholar
  18. Domingues TF, JA Berry, LA Martinelli, JPHB Ometto, and JR Ehleringer. 2005. Parameterization of canopy structure and leaf-level gas exchange for an Eastern Amazonian tropical rain forest (Tapajos National Forest, Para, Brazil). Earth Interactions 9:1-23CrossRefGoogle Scholar
  19. Doughty CE, Goulden ML. 2008. Seasonal patterns of tropical forest leaf area index and CO2 exchange. J Geophys Res 113. doi: 10.1029/2007JG000590
  20. Elliot S, PJ Baker, R Borchert. 2006. Leaf flushing during the dry season: the paradox of Asian monsoon forests. Global Ecology and Biogeography 15:248-257Google Scholar
  21. Fan, SM, SC Wofsy, PS Bakwin, DJ Jacob. 1990. Atmosphere-biosphere exchange of CO2 and O3 in the Central Amazon forest. Journal of Geophysical Research 95:16851-16864CrossRefGoogle Scholar
  22. Farquhar GD, S von Caemmerer, JA Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149:78-90CrossRefGoogle Scholar
  23. Field, CB, MJ Behrenfield, JT Randerson, P Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237-240PubMedCrossRefGoogle Scholar
  24. Fisher, JI, AD Richardson, JF Mustard. 2007. Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology 13:707-721CrossRefGoogle Scholar
  25. Fisher RA, M Williams, R Lobo do Vale, A Lola da Costa, P Meir. 2006. Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant, Cell and Environment 29:151-165PubMedCrossRefGoogle Scholar
  26. Foley JA, Botta A, Coe MT, Costa MH. 2002. El Niño southern oscillation and the climate, ecosystems, and rivers of Amazonia. Global Biogeochem Cycles 4. doi: 10.1029/2002GB001872
  27. Friedl MA, DK McIver, JCF Hodges, XY Zhang, D Muchoney, AH Strahler, CE Woodcock, S Gopal, A Schneider, A Cooper, A Baccini, F Gao, CB Schaaf. 2002. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sensing of Environment 83:287-302CrossRefGoogle Scholar
  28. Gerten D, S Schaphoff, U Haberlandt, W Lucht, S Sitch. 2004. Terrestrial vegetation and water balance - hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology 286:249-270CrossRefGoogle Scholar
  29. Goulden ML, SD Miller, HR da Rocha, M Menton, HC de Freitas, AME Silva Figueira, CAD de Sousa. 2004. Diel and seasonal patterns of tropical forest CO2 exchange. Ecological Applications 14:S42-S54CrossRefGoogle Scholar
  30. Grace J, J Lloyd, J McIntyre, AC Miranda, P Meir, HS Miranda, CA Nobre, J Moncrief, Y Malhi, I Wright, JHC Gash. 1995. Carbon dioxide uptake by an undisturbed tropical rainforest in southwest Amazonia, 1992-1993. Science 270:778-780CrossRefGoogle Scholar
  31. Harris PP, C Huntingford, PM Cox, JHC Gash, Y Malhi. 2004. Effect of soil moisture on canopy conductance of Amazonian rainforest. Agricultural and Forest Meteorology 122:215-227CrossRefGoogle Scholar
  32. Haxeltine, A, IC Prentice. 1996a. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10:693-709CrossRefGoogle Scholar
  33. Haxeltine A, IC Prentice. 1996b. A general model for the light-use efficiency of primary production. Functional Ecology 10:551-561CrossRefGoogle Scholar
  34. Huete, AR, K Didan, YE Shimabukuro, P Ratana, SR Saleska, LR Hutyra, W Yang, RR Nemani, and RB Myneni. 2006. Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters 33: L06405, doi: 06410.01029/02005GL025583 CrossRefGoogle Scholar
  35. Ichii K, H Hashimoto, MA White, C Potter, LR Hutyra, AR Huete, RB Myneni, RR Nemani. 2007. Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality. Global Change Biology 13:67-77CrossRefGoogle Scholar
  36. Jipp, PH, DC Nepstad, DK Cassel, CR de Carvalho. 1998. Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Climate Change 39:395-412CrossRefGoogle Scholar
  37. Juarez, RIN, MG Hodnett, R Fu, ML Goulden, C von Randow. 2007. Controls of dry season evapotranspiration over the Amazonian forest as inferred from observations at a Southern Amazon forest site. Journal of Climate 20:2827-2839CrossRefGoogle Scholar
  38. Katul, G, R Leuning, R Oren. 2003. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell and Environment 26:339-350CrossRefGoogle Scholar
  39. Keller M, A Alencar, GP Asner, B Braswell, M Bustamante, EA Davidson, T Feldpausch, E Fernandes, ML Goulden, P Kabat, B Kruijt, F Luizao, SD Miller, D Markewitz, AD Nobre, CA Nobre, NP Filho, HR da Rocha, PS Dias, C Von Randow, GL Vourlitis. 2004. Ecological research in the large-scale biosphere-atmosphere experiment in Amazonia: Early results. Ecological Applications 14:S3-S16CrossRefGoogle Scholar
  40. Kleidon A, M Heimann. 1999. Deep-rooted vegetation, Amazonian deforestation, and climate: results from a modelling study. Global Ecology and Biogeography 8:397-405CrossRefGoogle Scholar
  41. Kobayashi H, DG Dye. 2005. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sensing of the Environment 97:519-525CrossRefGoogle Scholar
  42. Krinner, G, N Viovy, N de Noblet-Ducoudré, J Ogeé, J Polcher, P Friedlingstein, P Ciais, S Sitch, and IC Prentice. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19:GB1015, doi: 1010.1029/2003GB002199 CrossRefGoogle Scholar
  43. Lee JE, Oliveira RS, Dawson TE, Fung IY. 2005. Root functioning modifies seasonal climate. Proc Natl Acad Sci USA 102:17576–81PubMedCrossRefGoogle Scholar
  44. Malhi Y, AD Nobre, J Grace, B Kruijt, MGP Pereira, A Culf, S Scott. 1998. Carbon dioxide transfer over a central Amazonian rain forest. Journal of Geophysical Research 103:31593-31612CrossRefGoogle Scholar
  45. Malhi Y, Roberts JT, Betts RA, Killeen T, Li W, Nobre C. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319. doi: 10.1126/science.1146961
  46. Mayle FE, MJ Power. 2008. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B 363:1829-1838CrossRefGoogle Scholar
  47. Miranda AC, HS Miranda, J Lloyd, J Grace, RJ Francey, J McIntyre, P Meir, P Riggan, R Lockwood, J Brass. 1997. Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes. Plant, Cell and Environment 20:315-328CrossRefGoogle Scholar
  48. Moorcroft PR, GC Hurtt, SW Pacala. 2001. A method for scaling vegetation dynamics: The ecosystem demography model (ED). Ecological Monographs 71:557-586Google Scholar
  49. Myneni RB, Yang W, Nemani RR, Huete AR, Dickinson RE, Knyazikhin Y, Didan K, Fu R, Negron Juarez RI, Saatchi SS, Hashimoto H, Shabanov NV, Tan B, Ratana P, Privette JL, Morisette JT, Vermote EF, Roy DP, Wolfe RE, Fiedl MA, Running SW, Votava P, El-Saleous N, Devadiga S, Su Y, Salomonson VV. 2007. Large seasonal swings in leaf area of Amazon rainforests. Proc Natl Acad Sci USA. doi: 10.1073/pnas.0611338104
  50. Nepstad D, CR De Carvalhos, EA Davidson, PH Jipp, PA Lefebvre, GH Negreiros, ED da Silva, TA Stone, SE Trumbore, S Vieira. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666-669CrossRefGoogle Scholar
  51. Nepstad D, IM Tohver, D Ray, P Moutinho, G Cardinot. 2007. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259-2269PubMedCrossRefGoogle Scholar
  52. New M, D Lister, M Hulme, I Makin. 2002. A high-resolution data set of surface climate over global land areas. Climate Research 21:1-25CrossRefGoogle Scholar
  53. Oliveira RS, L Bezerra, EA Davidson, F Pinto, CA Klink, D Nepstad, A Moreira. 2005a. Deep root function in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology 19:574-581CrossRefGoogle Scholar
  54. Oliveira RS, T Dawson, SSO Burgess, D Nepstad. 2005b. Hydraulic redistribution in three Amazonian trees. Oecologia 145:354-363PubMedCrossRefGoogle Scholar
  55. Österle H, FW Gerstengarbe, PC Werner. 2003. Homogenisierung und Aktualisierung des Klimadatensatzes der Climate Research Unit der Universität of East Anglia, Norwich. Terra Nostra 6:326–329Google Scholar
  56. Potter C, S Klooster, CR de Carvalho, VB Genovese, A Torregrosa, J Dungan, M Bobo, J Coughlan. 2001. Modeling seasonal and interannual variability in ecosystem carbon cycling for the Brazilian Amazon region. Journal of Geophysical Research 106:10423-10446CrossRefGoogle Scholar
  57. Reich PB. 1995. Phenology of tropical forests: patterns, causes, and consequences. Canadian Journal of Botany 73:164-174CrossRefGoogle Scholar
  58. Reich PB, R Borchert. 1984. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. Journal of Ecology 72:61-74CrossRefGoogle Scholar
  59. Rice AH, EH Pyle, SR Saleska, LR Hutyra, M Palace, M Keller, PB de Camargo, K Portilho, DF Marques, SC Wofsy. 2004. Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecological Applications 14:S55-S71CrossRefGoogle Scholar
  60. Rivera, G, S Elliot, LS Caldas, G Nicolossi, VTR Coradin, and R Borchert. 2002. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445-456CrossRefGoogle Scholar
  61. Rivera G, S Elliot, LS Caldas, G Nicolossi, VTR Coradin, R Borchert. 2007. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445-456CrossRefGoogle Scholar
  62. Rödenbeck C, S Houweling, M Gloor, M Heimann. 2003. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmospheric Chemistry and Physics 3:1919-1964CrossRefGoogle Scholar
  63. Running, SW, RR Nemani, FA Heinsch, M Zhao, M Reeves, H Hashimoto. 2004. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54:547-560CrossRefGoogle Scholar
  64. Salazar LF, Nobre CA, Oyama MD. 2007. Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34. doi: 10.1029/2007GL029695
  65. Saleska SR, Didan K, Huete AR, da Rocha HR. 2007. Amazon forests green-up during 2005 drought. Science. doi: 10.1126/science.1146663
  66. Saleska, SR, SD Miller, DM Matross, ML Goulden, SC Wofsy, HR da Rocha, PB de Camargo, P Crill, BC Daube, HC de Freitas, LR Hutyra, M Keller, V Kirchhoff, M Menton, JW Munger, EH Pyle, AH Rice, and H Silva. 2003. Carbon in Amazon forests: Unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554-1558PubMedCrossRefGoogle Scholar
  67. Schenck HJ, RB Jackson. 2002. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology 90:480-494CrossRefGoogle Scholar
  68. Sellers P, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich D, Zhang C, Collelo GD, Bounoua L. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9:706–37CrossRefGoogle Scholar
  69. Senna MCA, Costa MH, Shimabukuro YE. 2005. Fraction of photosynthetically active radiation absorbed by Amazon tropical forest: a comparison of field measurements, modeling, and remote sensing. J Geophys Res 110. doi: 10.1029/2004JG000005
  70. Shuttleworth, WJ. 1988. Evaporation from Amazonian rainforest. Proc R Soc Lond 233:321–46CrossRefGoogle Scholar
  71. Sitch S, B Smith, IC Prentice, A Arneth, A Bondeau, W Cramer, JO Kaplan, S Levis, W Lucht, MT Sykes, K Thonicke, S Venevsky. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9:161-185CrossRefGoogle Scholar
  72. Stöckli R, Rutishauser T, Dragoni D, O’Keefe J, Thornton PE, Jolly M, Lu L, Denning AS. 2008. Remote sensing data assimilation for a prognostic phenology model. J Geophys Res 113. doi: 10.1029/2008JG000781
  73. Von Randow C, AO Manzi, B Kruijt, PJ de Oliveira, FB Zanchi, RL Silva, MG Hodnett, JHC Gash, JA Elbers, MJ Waterloo, FL Cardoso, P Kabat. 2004. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology 78:5-26Google Scholar
  74. Vörösmarty CJ, B Moore III, AL Grace, MP Gildea, JM Melillo, BJ Peterson, EB Rastetter, PA Steudler. 1989. Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochemical Cycles 3:241-255CrossRefGoogle Scholar
  75. Vourlitis GL, de Souza Nogueira J, de Almeida Lobo F, Sendall KM, de Paulo SR, Dias CAA, Pinto OB Jr, de Andrade NLR. 2008. Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resour Res 44. doi: 10.1029/2006WR005526
  76. Webb, RS, and CE Rosenzweig. 1993. Specifying land surface characteristics in general circulation models: Soil profile data set and derived water-holding capacities. Global Biogeochemical Cycles 7:97-108CrossRefGoogle Scholar
  77. Williams M, YE Shimabukuro, DA Herbert, SP Lacruz, CD Renno, EB Rastetter. 2002. Heterogeneity of soils and vegetation in an Eastern Amazonian rain forest: Implications for scaling up biomass and production. Ecosystems 5:692-704CrossRefGoogle Scholar
  78. Zobler L. 1986. A world soil file for global climate modeling. NASA Technical Memorandum 87802, 32 ppGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Benjamin Poulter
    • 1
  • Ursula Heyder
    • 1
  • Wolfgang Cramer
    • 1
    • 2
  1. 1.Earth System AnalysisPotsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  2. 2.Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE)Aix-en-Provence cedex 04France

Personalised recommendations