, Volume 12, Issue 1, pp 73–86 | Cite as

Linking Forest Fire Regimes and Climate—A Historical Analysis in a Dry Inner Alpine Valley

  • Thomas ZumbrunnenEmail author
  • Harald Bugmann
  • Marco Conedera
  • Matthias Bürgi


Forest fire regimes are likely to experience considerable changes in the European Alps due to climatic changes. However, little is known about the recent regional fire history and the impact of local climate on the fire regime during the 20th century. We therefore reconstructed the fire history in a dry continental valley of the Swiss Alps (Valais) over the past 100 years based on documentary evidence, and investigated the relationship between the reconstructed fire regime and the local climatic variability. We compared the impact of temperature, precipitation, drought and dry foehn winds on fire frequency, extent of burnt area, and fire seasonality on various spatial and temporal scales. In the subalpine zone, the fire regime appears to have been mainly driven by temperature and precipitation, whereas these variables seem to have played only a secondary role in the colline–montane zones. Here, foehn winds and, probably, non-climatic factors seem to have been more important. Temperature and precipitation played a major role in shaping fire frequency and burnt area in the first half of the 20th century, but lost their importance during the second half. Our case study illustrates the occurrence of different fire regime patterns and their driving forces on small spatial scales (a few hundred square kilometers). We conclude that the strong rise in temperature over the past century has not profoundly changed the fire regime in Valais, but in the second half of the 20th century temperature was no longer a strong determinant for forest fires as compared to human activities or biomass availability in forests.

Key words

Fire history Climate Continentality Documentary evidence Central Alps Switzerland 



This study was supported by the Swiss National Science Foundation (Grant No. 3100A0-108407/1). We thank the Forest Service of the Canton Valais and Urs Gimmi for making their data available to us, Silvia Dingwall for linguistic corrections, as well as Patricia Menéndez for her helpful advice in statistics. The constructive comments of three anonymous reviewers helped to improve the quality of this manuscript.


  1. Agee KJ. 1993. Fire ecology of Pacific Northwest forests. Washington, DC: Island Press. 493 pGoogle Scholar
  2. Bader S, Bantle H. 2004. Das Schweizer Klima im Trend: Temperatur- und Niederschlagsentwicklung 1864–2001. Veröffentlichung der MeteoSchweiz No. 68. 45 pGoogle Scholar
  3. Baeriswyl PA. 1994. Aspects de la ventilation et de la qualité de l’air d’une grande vallée alpine, la vallée du Rhône en Valais. PhD thesis. Fribourg: University of FribourgGoogle Scholar
  4. Baker WL. 2003. Fires and climate in forested landscapes of the U.S. Rocky Mountains. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW, Eds. Fire and climatic change in temperate ecosystems of the western Americas. New York: Springer, pp 120–57CrossRefGoogle Scholar
  5. Bergeron Y, Archambault S. 1993. Decreasing frequency of forest fires in the southern boreal zone of Québec and its relation to global warming since the end of the “Little Ice Age”. Holocene 3:255–9CrossRefGoogle Scholar
  6. Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A. 2006. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–43CrossRefGoogle Scholar
  7. Bochatay J, Moulin JB. 2000. Inventaire des incendies de forêt dans le canton du Valais. Rapport du Service des forêts et du paysage, Canton du Valais. 45 pGoogle Scholar
  8. Bouët M. 1972. Le foehn du Valais. Veröffentlichung der MeteoSchweiz No. 26. 12 pGoogle Scholar
  9. Braun-Blanquet J. 1961. Die inneralpine Trockenvegetation: von der Provence bis zur Steiermark. Stuttgart: Gustav Fischer. 273 pGoogle Scholar
  10. Bugmann H. 2001. A comparative analysis of forest dynamics in the Swiss Alps and the Colorado Front Range. For Ecol Manage 145:43–55CrossRefGoogle Scholar
  11. Bugmann H. 2005. Waldbrände in der Schweiz: Gestern, heute—und morgen?. Schweizerische Zeitschrift für Forstwesen 156:323–4Google Scholar
  12. Bundesamt für Statistik. 2000. Wald und Holz in der Schweiz: Jahrbuch 2000. Neuchâtel. 169 pGoogle Scholar
  13. Bundesamt für Statistik. 2005. Arealstatistik Schweiz: Zahlen, Fakten, Analysen. Neuchâtel. 99 pGoogle Scholar
  14. Bundesamt für Statistik. 2008. Statistische Online-Datenbank (Statweb)Google Scholar
  15. Buresti E, Sulli M. 1983. Andamento degli incendi boschivi in relazione al tempo atmosferico dal 1963 al 1981 nel Varesotto: prova di un metodo di previsione del rischio. Annali dell’Istituto Sperimentale per la selvicoltura, Arezzo XIV:331–49Google Scholar
  16. Carcaillet C, Bergeron Y, Richard PJH, Fréchette B, Gauthier S, Prairie YT. 2001. Changes of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime? J Ecol 89:930–46CrossRefGoogle Scholar
  17. Carcaillet C, Bergman I, Delorme S, Hornberg G, Zackrisson O. 2007. Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest. Ecology 88:465–77PubMedCrossRefGoogle Scholar
  18. Cesti G. 1990. Il vento e gli incendi boschivi. Région Autonome de la Vallée d’Aoste: Assessorat de l’Agriculture, des Forêts et de l’Environnement. 159 pGoogle Scholar
  19. Cesti G, Cerise A. 1992. Aspetti degli incendi boschivi. Quart: Musumeci. 295 pGoogle Scholar
  20. Chuvieco E, Giglio L, Justice C. 2008. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biol 14:1488–502CrossRefGoogle Scholar
  21. Clark JS, Grimm EC, Donovan JJ, Fritz SC, Engstrom DR, Almendinger JE. 2002. Drought cycles and landscape responses to past aridity on prairies of the northern Great Plains, USA. Ecology 83:595–601Google Scholar
  22. Conedera M, Marcozzi M, Jud B, Mandallaz D, Chatelain F, Frank C, Kienast F, Ambrosetti P, Corti G. 1996. Incendi boschivi al Sud delle Alpi: passato, presente e possibili sviluppi future. Zurich: vdf Hochschulverlag. 143 pGoogle Scholar
  23. Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F. 2006. Lightning induced fires in the Alpine region: an increasing problem. In: Viegas DX, Ed. 5th International Conference on Forest Fire Research, Figueira da Foz, Portugal. Coimbra: University of Coimbra [CD-ROM]Google Scholar
  24. Cumming SG. 2001. Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecol Appl 11:97–110CrossRefGoogle Scholar
  25. Dimitrakopoulos AP, Papaioannou KK. 2001. Flammability assessment of Mediterranean forest fuels. Fire Technol 37:143–52CrossRefGoogle Scholar
  26. Etat du Valais. 2000. Lothar: 65,000 m3 de bois renversés en Valais. Communiqué pour les médias de la Présidence du Conseil d’EtatGoogle Scholar
  27. Ficker Hv De Rudder B. 1943. Föhn und Föhnwirkungen:der gegenwärtige Stand der Frage. Leipzig: Becker and Erler. 112 pGoogle Scholar
  28. Flannigan MD, Bergeron Y, Engelmark O, Wotton BM. 1998. Future wildfire in circumboreal forests in relation to global warming. J Veg Sci 9: 469–76CrossRefGoogle Scholar
  29. Flannigan MD, Campbell I, Wotton M, Carcaillet C, Richard P, Bergeron Y. 2001. Future fire in Canada’s boreal forest: paleoecology results and general circulation model—regional climate model simulations. Can J For Res 31:854–64CrossRefGoogle Scholar
  30. Frelich LE. 2002. Forest dynamics and disturbance regimes: studies from temperate evergreen-deciduous forests. Cambridge: Cambridge University Press. 266 pGoogle Scholar
  31. Fry DL, Stephens SL. 2006. Influence of humans and climate on the fire history of a ponderosa pine-mixed conifer forest in the southeastern Klamath Mountains, California. For Ecol Manage 223:428–38CrossRefGoogle Scholar
  32. Gimmi U, Bürgi M. 2007. Using oral history and forest management plans to reconstruct traditional non-timber forest uses in the Swiss Rhone valley (Valais) since the late nineteenth century. Environ Hist 13:211–46CrossRefGoogle Scholar
  33. Gimmi U, Bürgi M, Wohlgemuth T. 2004. Wie oft brannte der Walliser Wald im 20. Jahrhundert? Schweizerische Zeitschrift für Forstwesen 155:437–40CrossRefGoogle Scholar
  34. Gimmi U, Bürgi M, Stuber M. 2008. Reconstructing anthropogenic disturbance regimes in forest ecosystems: a case study from the Swiss Rhone valley. Ecosystems 11:113–24CrossRefGoogle Scholar
  35. Granström A. 1993. Spatial and temporal variation in lightning ignitions in Sweden. J Veg Sci 4:737–44CrossRefGoogle Scholar
  36. Gutersohn H. 1961. Geographie der Schweiz in drei Bänden: Band II, I. Teil—Alpen. Berne: Kümmerly + Frey. 486 pGoogle Scholar
  37. Hainard P. 1969. Signification écologique et biogéographique de la répartition des essences forestières sur l’adret valaisan. Genève: Conservatoire et jardin botaniques. 150 pGoogle Scholar
  38. Heyerdahl EK, Morgan P, Riser JP. 2008. Multi-season climate synchronized historical fires in dry forests (1650–1900), Northern Rockies, USA. Ecology 89:705–16PubMedCrossRefGoogle Scholar
  39. Julen S. 1988. Erneute Nutzung von Brachland im Kanton Wallis—Brachlandsituationen und Handlungsmöglichkeiten. PhD thesis. Zurich: University of ZurichGoogle Scholar
  40. Keeley JE, Fotheringham CJ. 2001. Historic fire regime in southern California shrublands. Conserv Biol 15:1536–48CrossRefGoogle Scholar
  41. Kempf A. 1985. Waldveränderungen als Kulturlandschaftswandel—Walliser Rhonetal. Basel: Wepf. 262 pGoogle Scholar
  42. Kitzberger T, Veblen TT, Villalba R. 1997. Climatic influences on fire regimes along a rain forest-to-xeric woodland gradient in northern Patagonia, Argentina. J Biogeogr 24:35–47CrossRefGoogle Scholar
  43. Kuhn M (Ed). 1989. Föhnstudien. Darmstadt: Wissenschaftliche BuchgesellschaftGoogle Scholar
  44. Kulakowski D, Veblen TT. 2007. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests. Ecology 88:759–69PubMedCrossRefGoogle Scholar
  45. Kunkel KE. 2001. Surface energy budget and fuel moisture. In: Johnson EA, Miyanishi K, Eds. Forest fires: behavior and ecological effects. San Diego: Academic Press. pp 303–50Google Scholar
  46. Kuonen T. 1993. Histoire des forêts de la région de Sion du Moyen-Age à nos jours. Sion: Vallesia. 676 pGoogle Scholar
  47. Larjavaara M, Pennanen J, Tuomi TJ. 2005. Lightning that ignites forest fires in Finland. Agr For Meteorol 132:171–80CrossRefGoogle Scholar
  48. Minnich RA. 2001. An integrated model of two fire regimes. Conserv Biol 15:1549–53CrossRefGoogle Scholar
  49. Minnich RA, Vizcaino EF, Sosaramirez J, Chou YH. 1993. Lightning detection rates and wildland fire in the mountains of northern Baja-Califorina, Mexico. Atmosfera 6:235–53Google Scholar
  50. Montenegro G, Ginocchio R, Segura A, Keely JE, Gomez M. 2004. Fire regimes and vegetation responses in two Mediterranean-climate regions. Revista chilena de historia natural 77:455–64CrossRefGoogle Scholar
  51. Nash CH, Johnson EA. 1996. Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests. Can J For Res 26:1859–74CrossRefGoogle Scholar
  52. Niklasson M, Granström A. 2000. Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–99CrossRefGoogle Scholar
  53. Palmer WC. 1965. Meteorological drought. Research paper No. 45. United States Department of Commerce, Weather Bureau, Washington, DCGoogle Scholar
  54. Patterson WA, Backman AE. 1988. Fire and disease history of forests. In: Huntley B, Webb T, Eds. Vegetation history. Dordrecht: Kluwer. pp 603–32Google Scholar
  55. Pausas JG. 2004. Changes in fire and climate in the Eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63:337–50CrossRefGoogle Scholar
  56. Pyne SJ, Andrews PL, Laven RD. 1996. Introduction to wildland fire. New York: Wiley. 769 pGoogle Scholar
  57. Renkin RA, Despain DG. 1992. Fuel moisture, forest type, and lightning-caused fire in Yellowstone-National-Park. Can J For Res 22:37–45CrossRefGoogle Scholar
  58. Ritzmann-Blickenstorfer H. 1996. Historische Statistik der Schweiz. Zurich: Chronos Verlag. 1221 pGoogle Scholar
  59. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C. 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427:332–6PubMedCrossRefGoogle Scholar
  60. Schreiber KF, Kuhn N, Hug C, Häberli R, Schreiber C, Zeh W, Lautenschlager S. 1977. Wärmegliederung der Schweiz. Berne: Federal Department of Justice and Police. 69 pGoogle Scholar
  61. Schumacher S, Bugmann H. 2006. The relative importance of climatic effects, wildfires and management for future forest landscape dynamics in the Swiss Alps. Glob Change Biol 12:1435–50CrossRefGoogle Scholar
  62. Shafer BA, Dezman LE. 1982. Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In: Proceedings of the Western Snow Conference. Colorado State University, Fort Collins, CL. p 164–75Google Scholar
  63. Stefani A. 1989. Boschi e incendi in Lombardia. Dendronatura 10:41–7Google Scholar
  64. Susmel L. 1973. Development and present problems of forest fire control in the Mediterranean region. Rome: FAO. 100 pGoogle Scholar
  65. Swetnam TW. 1993. Fire history and climate change in giant sequoia groves. Science 262:885–9PubMedCrossRefGoogle Scholar
  66. Swetnam TW, Betancourt JL. 1990. Fire-southern oscillation relations in the southwestern United States. Science 249:1017–20PubMedCrossRefGoogle Scholar
  67. Swetnam TW, Betancourt JL. 1998. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J Clim 11:3128–47CrossRefGoogle Scholar
  68. Thornthwaite CW. 1948. An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  69. Thornthwaite CW, Mather JR. 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Publications in Climatology vol. 10. Laboratory of Climatology, Centerton (New Jersey)Google Scholar
  70. Veblen TT, Kitzberger T, Donnegan J. 2000. Climatic and human influences on fire regimes in ponderosa pine forests in the Colorado Front Range. Ecol Appl 10:1178–95CrossRefGoogle Scholar
  71. Walther P, Julen S. 1986. Unkontrollierte Waldflächenvermehrung im Schweizer Alpenraum. Report of the Swiss Federal Institute of Forestry Research Nr 282, Birmensdorf. 83 pGoogle Scholar
  72. Werlen C. 1994. Elaboration de la carte de végétation forestière du Valais. Schweizerische Zeitschrift für Forstwesen 14:607–17Google Scholar
  73. Werner P. 1994. Die Flora. Martigny: Pillet. 259 pGoogle Scholar
  74. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. 2006. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313:940–3PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas Zumbrunnen
    • 1
    • 2
    Email author
  • Harald Bugmann
    • 2
  • Marco Conedera
    • 3
  • Matthias Bürgi
    • 1
  1. 1.Research Unit Land Use DynamicsWSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
  2. 2.Department of Environmental Sciences, Institute of Terrestrial EcosystemsSwiss Federal Institute of Technology Zurich (ETH)ZurichSwitzerland
  3. 3.Research Unit Ecosystem BoundariesSwiss Federal Institute for Forest, Snow and Landscape ResearchBellinzona-RavecchiaSwitzerland

Personalised recommendations