Ecosystems

, Volume 11, Issue 8, pp 1352–1367 | Cite as

Soil Respiration in European Grasslands in Relation to Climate and Assimilate Supply

  • Michael Bahn
  • Mirco Rodeghiero
  • Margaret Anderson-Dunn
  • Sabina Dore
  • Cristina Gimeno
  • Matthias Drösler
  • Michael Williams
  • Christof Ammann
  • Frank Berninger
  • Chris Flechard
  • Stephanie Jones
  • Manuela Balzarolo
  • Suresh Kumar
  • Christian Newesely
  • Tibor Priwitzer
  • Antonio Raschi
  • Rolf Siegwolf
  • Sanna Susiluoto
  • John Tenhunen
  • Georg Wohlfahrt
  • Alexander Cernusca
Article

Abstract

Soil respiration constitutes the second largest flux of carbon (C) between terrestrial ecosystems and the atmosphere. This study provides a synthesis of soil respiration (R s) in 20 European grasslands across a climatic transect, including ten meadows, eight pastures and two unmanaged grasslands. Maximum rates of R s ( \( R_{{{\text{s}}_{{{\text{max}}}} }} \)), R s at a reference soil temperature (10°C; \( R_{{{\text{s}}_{{{\text{10}}}} }} \)) and annual R s (estimated for 13 sites) ranged from 1.9 to 15.9 μmol CO2 m−2 s−1, 0.3 to 5.5 μmol CO2 m−2 s−1 and 58 to 1988 g C m−2 y−1, respectively. Values obtained for Central European mountain meadows are amongst the highest so far reported for any type of ecosystem. Across all sites \( R_{{{\text{s}}_{{{\text{max}}}} }} \) was closely related to \( R_{{{\text{s}}_{{{\text{10}}}} }} \). Assimilate supply affected R s at timescales from daily (but not necessarily diurnal) to annual. Reductions of assimilate supply by removal of aboveground biomass through grazing and cutting resulted in a rapid and a significant decrease of R s. Temperature-independent seasonal fluctuations of R s of an intensively managed pasture were closely related to changes in leaf area index (LAI). Across sites \( R_{{{\text{s}}_{{{\text{10}}}} }} \) increased with mean annual soil temperature (MAT), LAI and gross primary productivity (GPP), indicating that assimilate supply overrides potential acclimation to prevailing temperatures. Also annual R s was closely related to LAI and GPP. Because the latter two parameters were coupled to MAT, temperature was a suitable surrogate for deriving estimates of annual R s across the grasslands studied. These findings contribute to our understanding of regional patterns of soil C fluxes and highlight the importance of assimilate supply for soil CO2 emissions at various timescales.

Keywords

soil CO2 efflux temperature moisture gross primary productivity leaf area index soil carbon land use 

Notes

Acknowledgements

The study was funded by the EU FP5 projects CarboMont (EVK-2001-00125) and GreenGrass (EVK-2001-00105); data analysis was supported by the Austrian National Science Fund (FWF) project P18756-B16. We acknowledge assistance in data collection by Nadine Pfahringer, Anton Pallua, Anton Stefan Schwarz, Robert Bajo, Christian Skublics, Yuelin Li and Silvia Baronti.

References

  1. Amthor JS, Baldocchi DD. 2001. Terrestrial higher plant respiration and net primary productivity. In: Roy J, Saugier B, Mooney HA, Eds. Terrestrial global productivity. San Diego: Academic Press San Diego, p 33–59CrossRefGoogle Scholar
  2. Atkin OK, Westbeek MHM, Cambridge ML, Lambers H, Pons TL. 1997. Leaf respiration in light and darkness. Plant Physiol 113:961–5.PubMedGoogle Scholar
  3. Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A. 2006. Root respiration in temperate mountain grasslands differing in land use. Glob Chang Biol 12:995–1006CrossRefGoogle Scholar
  4. Bahn M, Kutsch W, Heinemeyer A, Janssens I. 2008. Towards a standardised protocol for the assessment of soil CO2 fluxes. In: Kutsch W, Bahn M, Heinemeyer A, Eds. Soil carbon fluxes. An integrated methodology. Cambridge University Press (in press)Google Scholar
  5. Bain WG, Hutyra L, Patterson DC, Bright AV, Daube BC, Munger JW, Wofsy SC. 2005. Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agric For Meteorol 131:225–32CrossRefGoogle Scholar
  6. Baldocchi D, Tang J, Xu L. 2006. How switches and lags in biophysical regulators affect spatio-temporal variation of soil respiration in an oak-grass savanna. J Geophys Res 111. doi:  101029/2005JG000063
  7. Bolstad PV, Davis KJ, Martin J, Cook BD, Wang W. 2004. Component and whole-system respiration fluxes in northern deciduous forests. Tree Physiol 24:493–504PubMedGoogle Scholar
  8. Boone RD, Nadelhoffer KJ, Canary JD, others. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–2Google Scholar
  9. Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR. 2002. 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131:113–24CrossRefGoogle Scholar
  10. Bremer DJ, Ham JM. 2002. Measurement and modelling of soil CO2 flux in a temperate grassland under mowed and burned regimes. Ecol Appl 12:1318–28Google Scholar
  11. Bremer DJ, Ham JM, Owensby CE, Knapp AK. 1998. Responses of soil respiration to clipping and grazing in a tallgrass prairie. J Environ Qual 27:1539–48CrossRefGoogle Scholar
  12. Cao G, Tang Y, Mo W, Mo W, Wang Y, Li Y, Zhao X. 2004. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biol Biochem 36:237–43CrossRefGoogle Scholar
  13. Cernusca A, Bahn M, Berninger F, Tappeiner U, Wohlfahrt G. 2008. Effects of land-use changes on sources, sinks and fluxes of carbon in European mountain grasslands. Ecosystems (this issue)Google Scholar
  14. Craine JM, Wedin DA, Chapin FSIII. 1999. Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant Soil 207:77–86CrossRefGoogle Scholar
  15. Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–73PubMedCrossRefGoogle Scholar
  16. Davidson EA, Janssens IA, Luo Y. 2006. On the variability of respiration in terrestrial ecosystems moving beyond Q10. Glob Chang Biol 12:154–64CrossRefGoogle Scholar
  17. Davidson EA, Savage K, Verchot LV, Navarro R. 2002. Minimizing chamber artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37.CrossRefGoogle Scholar
  18. Davidson EA, Verchot LV, Cattanio JH, Ackermann IL, Carvalho JEM. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:43–69CrossRefGoogle Scholar
  19. Dornbush ME, Raich JW. 2006. Soil temperature, not aboveground plant productivity, best predicts intra-annual variations of soil respiration in Central Iowa grasslands. Ecosystems 9:909–20CrossRefGoogle Scholar
  20. Drewitt GB, Black TA, Nesic Z, Humphreys ER, Jork EM, Swanson R, Ethier GJ, Griffis T Morgenstern K. 2002. Measuring forest floor CO2 fluxes in a Douglas-fir forest. Argric For Meteorol 110:229–317CrossRefGoogle Scholar
  21. Ekblad A, Högberg P. 2001. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between photosynthesis and root respiration. Oecologia 127:305–8CrossRefGoogle Scholar
  22. Ekblad A, Boström B, Holm A. 2005. Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–42PubMedCrossRefGoogle Scholar
  23. Fontaine S, Bardoux G, Abbadie L, Mariotti A. 2004. Carbon input to soil may decrease soil carbon content. Ecol Lett 87:314–20CrossRefGoogle Scholar
  24. Gilmanov TG, Sousanna JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campell CL, Cernusca A, Cescatti A, Clifton-Brown J, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Gruenwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio C, Raschi A, Rogiers N, Sanz MJ, Stefani P Sutton M, Tuba Z, Valentini R, Williams ML, Wohlfahrt G. 2007. Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ 121:93–120CrossRefGoogle Scholar
  25. Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC. 1996. Exchange of carbon dioxide by a deciduous forest response to interannual climate variability. Science 271:1576–8CrossRefGoogle Scholar
  26. Gu L, Post WM, King AW. 2004. Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis. Global Biochem Cycles 18:1–11CrossRefGoogle Scholar
  27. Harper W, Blair JM, Fay PA, Knapp AK, Carlisle JD. 2005. Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Glob Chang Biol 11:322–34CrossRefGoogle Scholar
  28. Hibbard KA, Law BE, Reichstein M, Sulzman J. 2005. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73:29–70CrossRefGoogle Scholar
  29. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Loefvenius M, Read DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789–91.PubMedCrossRefGoogle Scholar
  30. Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Iborm A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Chang Biol 7:269–78CrossRefGoogle Scholar
  31. Janssens IA, Dore S, Epron D, Lankreijer H, Buchmann N, Longdoz B, Brossaud J, Montagnani L. 2003. Climatic influences on seasonal and spatial differences in soil CO2 efflux. In: Baldwin IT, Caldwell MM, Heldmaier G, Lange OL, Mooney HA, Schulze ED, Sommer U, Eds. Fluxes of carbon, water and energy of European forests. Ecological studies 163. Berlin-Heidelberg: Springer-VerlagGoogle Scholar
  32. Johnson LC, Matchett JR. 2001. Fire and grazing regulate belowground processes in tallgrass prairie. Ecology 82:3377–89CrossRefGoogle Scholar
  33. Kane ES, Pregitzer KS, Burton AJ. 2003. Soil respiration along environmental gradients in Olympic National Park. Ecosystems 6:326–35CrossRefGoogle Scholar
  34. Kuzyakov Y. 2002. Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–96CrossRefGoogle Scholar
  35. Lavigne MB, Ryan MG, Anderson DE, Baldocchi DD, Crill PM, Fitzjarrald DR, Goulden ML, Gower ST, Massheder JM, McCaughey JH, Rayment M, Striegl RG. 1997. Comparing nocturnal eddy covariance measurements to the estimates of ecosystems respiration made by scaling chamber measurements at six coniferous boreal sites. J Geophys Res 102:28977–85CrossRefGoogle Scholar
  36. Liu Q, Edwards NT, Post WM, Gu L, Ledford J, Lenhart S. 2006. Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest. Glob Chang Biol 12:1–10CrossRefGoogle Scholar
  37. Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23CrossRefGoogle Scholar
  38. Luo Y, Jackson RB, Field CB, Mooney HA. 1996. Elevated CO2 increase belowground respiration in California grasslands. Oecologia 108:130–7CrossRefGoogle Scholar
  39. Medlyn B, Robinson AP, Clement R, McMurtrie RE. 2005. On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls. Tree Physiol 25:839–57PubMedGoogle Scholar
  40. Norman JM, Kucharik CJ, Gower ST, Baldocchi DD, Crill PM, Rayment M, Savage K, Striegl RG. 1997. A comparison of six methods for measuring soil-surface carbon dioxide fluxes. J Geophys Res 102:28771–7CrossRefGoogle Scholar
  41. Pendall E, DelGrosso S, King JY, LeCain DR, Milchunas DG, Morgan JA, Mosier AR, Ojima DS, Parton WA, Tans PP, White JWC. 2003. Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochem Cycles 17. doi: 10.1029/2001GB001821
  42. Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grünzweig JM, Reth S, Subke JA, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, Lindroth A, Hari P. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 3–4:159–76CrossRefGoogle Scholar
  43. Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99Google Scholar
  44. Raich JW, Potter CS. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cycles 9:23–36CrossRefGoogle Scholar
  45. Raich JW, Tufekcioglu A. 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90CrossRefGoogle Scholar
  46. Raich JW, Potter CS, Bhagawati D. 2002. Interannual variability in global soil respiration, 1980–94. Glob Chang Biol 8:800–12CrossRefGoogle Scholar
  47. Reichstein M, Rey A, Freibauer A, Tenhungen J, Valentini R, Banza J, Casals P, Cheng Y, Grünzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D. 2003. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochem Cycles 17(4):1104CrossRefGoogle Scholar
  48. Reichstein M, Subke JA, Angeli AC, Tenhunen J. 2005. Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Glob Chang Biol 11:1–14CrossRefGoogle Scholar
  49. Richardson AD, Hollinger DY. 2005. Statistical modeling of ecosystem respiration using eddy covariance data: maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models. Agric For Meteorol 131:191–208CrossRefGoogle Scholar
  50. Rodeghiero M, Cescatti A. 2005. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Glob Chang Biol 11:1024–41CrossRefGoogle Scholar
  51. Savage KE, Davidson EA. 2003. A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution. J Exp Bot 54:891–9PubMedCrossRefGoogle Scholar
  52. Schlesinger WH, Andrews JA. 2000. Soil respiration and the global carbon cycle. Biogeochemistry 58:7–20CrossRefGoogle Scholar
  53. Shao J. 1993. Linear model selection by cross validation. J Am Stat Assoc 88:486–94CrossRefGoogle Scholar
  54. Smith VR. 2003. Soil respiration and its determinants on a sub-Antarctic island. Soil Biol Biochem 35:77–91. CrossRefGoogle Scholar
  55. Sousanna JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R. 2007. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agric Ecosyst Environ 121:121–34CrossRefGoogle Scholar
  56. Steinmann K, Siegwolf RTW, Saurer M, Körner C. 2004. Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia 141:489–501PubMedCrossRefGoogle Scholar
  57. Subke JA, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF. 2004. Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139:551–9PubMedCrossRefGoogle Scholar
  58. Tang J, Baldocchi D, Xu L. 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob Chang Biol 11:1298–304CrossRefGoogle Scholar
  59. Velthof GL, Oenema O. 1995. Nitrous oxide fluxes from grassland in the Netherlands: statistical analysis of flux chamber measurements. Eurasian J Soil Sci 46:533–40CrossRefGoogle Scholar
  60. Wan S, Luo Y. 2003. Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochem Cycles 17:1–12CrossRefGoogle Scholar
  61. Wohlfahrt G, Anfang C, Bahn M, Haslwanter A, Newesely C, Schmitt M, Drösler M, Pfadenhauer J, Cernusca A. 2005a. Quantifying ecosystem respiration of a mountain meadow using eddy covariance, chambers and modelling. Agric For Meteorol 128:141–62CrossRefGoogle Scholar
  62. Wohlfahrt G, Bahn M, Haslwanter A, Newesely C, Cernusca A. 2005b. Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agric For Meteorol 130:13–25CrossRefGoogle Scholar
  63. Wohlfahrt G, Anderson-Dunn M, Bahn M, Balzarolo M, Berninger F, Campbell C, Carrara A, Cescatti A, Christensen T, Dore S, Eugster W, Friborg T, Furger M, Gianelle D, Gimeno C, Hargreaves K, Hari P, Haslwanter A, Johansson T, Marcolla B, Milford C, Nagy Z, Nemitz E, Rogiers N, Sanz MJ, Siegwolf RTW, Susiluoto S, Sutton M, Tuba Z, Ugolini F, Valentini R, Zorer R, Cernusca A. 2008. Biotic, abiotic and anthropogenic controls on the net ecosystem CO2 exchange of European mountain grasslands. Ecosystems (this issue)Google Scholar
  64. Zhou X, Wan S, Luo Y. 2007. Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Glob Chang Biol 13:761–75Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael Bahn
    • 1
  • Mirco Rodeghiero
    • 2
  • Margaret Anderson-Dunn
    • 3
  • Sabina Dore
    • 4
  • Cristina Gimeno
    • 5
  • Matthias Drösler
    • 6
  • Michael Williams
    • 7
  • Christof Ammann
    • 8
  • Frank Berninger
    • 9
  • Chris Flechard
    • 8
  • Stephanie Jones
    • 3
  • Manuela Balzarolo
    • 4
  • Suresh Kumar
    • 7
  • Christian Newesely
    • 1
  • Tibor Priwitzer
    • 10
  • Antonio Raschi
    • 11
  • Rolf Siegwolf
    • 12
  • Sanna Susiluoto
    • 10
  • John Tenhunen
    • 6
  • Georg Wohlfahrt
    • 1
  • Alexander Cernusca
    • 1
  1. 1.Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  2. 2.Centro di Ecologia Alpina-Fondazione Edmund MachTrentoItaly
  3. 3.Centre for Ecology and Hydrology EdinburghPenicuik, MidlothianUnited Kingdom
  4. 4.Department of Forest Science and EnvironmentUniversity of TusciaViterboItaly
  5. 5.Fundación Centro de Estudios Ambientales del MediterráneoPaternaSpain
  6. 6.Department of Plant EcologyUniversity of BayreuthBayreuthGermany
  7. 7.Department of Botany, School of Natural ScienceTrinity College, University of DublinDublin 2Ireland
  8. 8.Federal Research Station for Agroecology and AgricultureZürichSwitzerland
  9. 9.Department of Forest EcologyUniversity of HelsinkiHelsinkiFinland
  10. 10.National Forest Centre-Forest Research InstituteZvolenSlovakia
  11. 11.Consiglio Nazionale delle RicercheFirenzeItaly
  12. 12.Paul-Scherrer-InstituteVilligen PSISwitzerland

Personalised recommendations