Ecosystems

, Volume 11, Issue 8, pp 1338–1351 | Cite as

Biotic, Abiotic, and Management Controls on the Net Ecosystem CO2 Exchange of European Mountain Grassland Ecosystems

  • Georg Wohlfahrt
  • Margaret Anderson-Dunn
  • Michael Bahn
  • Manuela Balzarolo
  • Frank Berninger
  • Claire Campbell
  • Arnaud Carrara
  • Alessandro Cescatti
  • Torben Christensen
  • Sabina Dore
  • Werner Eugster
  • Thomas Friborg
  • Markus Furger
  • Damiano Gianelle
  • Cristina Gimeno
  • Ken Hargreaves
  • Pertti Hari
  • Alois Haslwanter
  • Torbjörn Johansson
  • Barbara Marcolla
  • Celia Milford
  • Zoltan Nagy
  • Eiko Nemitz
  • Nele Rogiers
  • Maria J. Sanz
  • Rolf T.W. Siegwolf
  • Sanna Susiluoto
  • Mark Sutton
  • Zoltan Tuba
  • Francesca Ugolini
  • Riccardo Valentini
  • Roberto Zorer
  • Alexander Cernusca
Article

Abstract

The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002–2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE. Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem respiration at the Alpine and northern study sites, but not at the southern sites characterized by a pronounced summer drought, where soil water availability and the amount of aboveground biomass were more or equally important. The amount of assimilating plant area was the single most important biotic variable determining the maximum ecosystem carbon uptake potential, that is, the NEE at saturating PPFD. Good correspondence, in terms of the magnitude of NEE, was observed with many (semi-) natural grasslands around the world, but not with grasslands sown on fertile soils in lowland locations, which exhibited higher maximum carbon gains at lower respiratory costs. It is concluded that, through triggering rapid changes in the amount and area of the aboveground plant matter, the timing and frequency of land management practices is crucial for the short-term sensitivity of the NEE of the investigated mountain grassland ecosystems to climatic drivers.

Key words

biomass Carbomont ecosystem respiration eddy covariance green area index grazing light response mowing 

References

  1. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer Ch, Clement R, Elbers J, Granier A, Grünwarld T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T. 2000. Estimates of the annual net carbon and water exchange of forest: the EUROFLUX methodology. Advances in Ecological Research 30:113-175.CrossRefGoogle Scholar
  2. Aubinet M, Berbigier P, Bernhofer Ch, Cescatti A, Feigenwinter C, Granier A, Grünewald Th, Havrankova K, Heinesch B, Longdoz B, Marcolla B, Montagnani L, Sedlak P. 2005. Comparing CO2 storage and advection conditions at night at different Carboeuroflux sites. Boundary-Layer Meteorology 116: 63-94.CrossRefGoogle Scholar
  3. Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A. 2006. Root respiration in temperate mountain grasslands differing in land use. Global Change Biology 12: 995-1006.CrossRefGoogle Scholar
  4. Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S, Gimeno S, Drösler M, Williams M, Ammann C, Berninger F, Flechard C, Jones S, Kumar S, Newesely C, Priwitzer T, Raschi A, Siegwolf R, Susiluoto S, Tenhunen J, Wohlfahrt G, Cernusca A. 2008. Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, this issueGoogle Scholar
  5. Baldocchi DD. 1997. Measuring and modeling carbon dioxide and water vapor exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant, Cell and Environment 20: 1108-1122.CrossRefGoogle Scholar
  6. Baldocchi DD. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9: 479-492.CrossRefGoogle Scholar
  7. Baldocchi DD, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger JW, Oechel W, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor and Energy Flux Densities. Bulletin of the American Meteorological Society 82: 2415–2435.CrossRefGoogle Scholar
  8. Barcza Z, Haszpra L, Kondo H, Saigusa N, Yamamoto S, Bartholy J. 2003. Carbon exchange of grass in Hungary. Tellus 55B: 187-196.Google Scholar
  9. Bätzing W, Ed. 1996. Landwirtschaft im Alpenraum-unverzichtbar aber zukunftslos? Eine alpenweite Bilanz der aktuellen Probleme und der möglichen Lösungen. Berlin: Blackwell WissenschaftsverlagGoogle Scholar
  10. Bayfield N, Barancok P, Furger M, Sebastia MT, Domínguez G, Lapka M, Cudlinova E, Vescovo L, Gianelle D, Cernusca A, Tappeiner U, Drösler M. 2008. Stakeholder perceptions of the impacts of rural funding scenarios on mountain landscapes across Europe. Ecosystems, this issueGoogle Scholar
  11. Buckley TN, Mott KA, Farquhar GD. 2003. A hydromechanical and biochemical model of stomatal conductance. Plant, Cell and Environment 26: 1767-1785.CrossRefGoogle Scholar
  12. Cernusca A, Tappeiner U, Bayfield N, Ed. 1999. Land-use changes in European mountain ecosystems. ECOMONT—concepts and results. Berlin: Blackwell WissenschaftsverlagGoogle Scholar
  13. Cernusca A, Bahn M, Berninger F, Tappeiner U, Wohlfahrt G. 2008. Effects of land-use changes on sources, sinks and fluxes of carbon in European mountain grasslands. Ecosystems, this issueGoogle Scholar
  14. Cescatti A, Niinemets Ü. 2004. Leaf to landscape. In: Smith WK, Vogelmann TC, Critchley C, Eds. Photosynthetic adaptation: Chloroplast to landscape. Ecol Stud 178: 42–85. New York: Springer-VerlagGoogle Scholar
  15. Davidson EA, Belk E, Boone RD. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4: 217–227.CrossRefGoogle Scholar
  16. De Pury DGG, Farquhar GD. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell and Environment 20: 537-557.CrossRefGoogle Scholar
  17. Evans JR. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19.CrossRefGoogle Scholar
  18. Feigenwinter Ch, Bernhofer Ch, Eichelmann U, Heinesch B, Hertel M, Janous D, Kolle O, Lagergren F, Lindroth A, Minerbi S, Moderow U, Mölder M, Montagnani L, Queck R, Rebmann C, Vestin P, Yernaux M, Zeri M, Ziegler W, Aubinet M. 2008. Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agricultural and Forest Meteorology 148: 12–24.CrossRefGoogle Scholar
  19. Flanagan LB, Johnson BG. 2005. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology 130: 237-253.CrossRefGoogle Scholar
  20. Flanagan LB, Wever LA, Carlson PJ. 2002. Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology 8: 599-615.CrossRefGoogle Scholar
  21. Foken, Th, Wichura B. 1996. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology 78: 83–105.CrossRefGoogle Scholar
  22. Garcia-Ruiz JM, Lasanta T, Ruiz-Flano P, Ortigosa L, White S, Gonzalez C, Marti C. 1996. Land-use changes and sustainable development in mountain areas: a case study in the Spanish Pyrenees. Landscape Ecology 11: 267-277.CrossRefGoogle Scholar
  23. Gilmanov TG, Verma SB, Sims PL, Meyers TP, Bradford JA, Burba GG, Suyker AE. 2003. Gross primary production and light response parameters of four Southern plains ecosystems estimated using long-term CO2-flux tower measurements. Global Biogeochem Cycles 17: DOI:10.109272002GB002023
  24. Gilmanov TG, Soussana J-F, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campbell CL, Cernusca A, Cescatti A, Clifton-Brown J, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Gruenwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G, Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio C, Raschi A, Rogiers N, Sanz MJ, Stefani P, Sutton M, Tuba Z, Valentini R, Williams ML, Wohlfahrt G. 2007. Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment 121: 93–120.CrossRefGoogle Scholar
  25. Grabher G, Gottfried M, Pauli H. 1994. Climate effects on mountain plants. Nature 369:448.CrossRefGoogle Scholar
  26. Griffis TJ, Black TA, Gaumont-Guay D, Drewitt GB, Nesic Z, Barr AG, Morgenstern K, Kljun N. 2004. Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest. Agricultural and Forest Meteorology 125: 207–223.CrossRefGoogle Scholar
  27. Gu L, Baldocchi DD, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR. 2002. Superiority of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107: DOI:10.1029/2001/JD001242
  28. Gu L, Falge E, Boden T, Baldocchi D, Black TA, Saleska S, Suni T, Verma S, Vesala T, Wofsy S, Xu L. 2005. Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology 128: 179–197.CrossRefGoogle Scholar
  29. Hammerle A, Haslwanter A, Schmitt M, Bahn M, Tappeiner U, Cernusca A, Wohlfahrt G. 2007. Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Boundary-Layer Meteorology 122: 397–416.CrossRefGoogle Scholar
  30. Hastings SJ, Oechel WC, Muhlia-Melo A. 2005. Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global Change Biology 11: 1-13.CrossRefGoogle Scholar
  31. Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottoson-Lofvenius M, Read DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411: 789-792.PubMedCrossRefGoogle Scholar
  32. Huxman TE, Harley PC, Monson RK, Sparks JP, Turnipseed AA. 2003. Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oecologia 134: 537-546.PubMedGoogle Scholar
  33. IPCC. 2001. Climate change 2001: the scientific basis. Summary for policymakers and technical summary of the working group I report. Cambridge: Cambridge University Press, 63 pGoogle Scholar
  34. Kato T, Tang Y, Gu S, Cui X, Hirota M, Du M, Li Y, Zhao X, Oikawa T. 2004a. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology 124: 121-134.CrossRefGoogle Scholar
  35. Kato T, Tang Y, Gu S, Hirota M, Cui X, Du M, Li Y, Zhao X, Oikawa T. 2004b. Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. J Geophys Res 109: DOI:10.10292003JD003951
  36. Larcher, W. 2001. Ökophysiologie der Pflanzen. Eugen Ulmer, Stuttgart.Google Scholar
  37. Li S-G, Asanuma J, Eugster W, Kotani A, Liu J-J, Urano T, Oikawa T, Davaa G, Oyunbaatar D, Sugita M. 2005. Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia.. Global Change Biology 11: 1941-1955.CrossRefGoogle Scholar
  38. Li Y-L, Tenhunen J, Owen K, Schmitt M, Bahn M, Droesler M, Otieno D, Schmidt M, Gruenwald Th, Hussain MZ, Mirzae H, Bernhofer Ch. 2008. Patterns in CO2 exchange capacity of grassland ecosystems in the Alps. Agricultural and Forest Meteorology 148: 51-68.CrossRefGoogle Scholar
  39. Maljanen M, Martikainen P, Walden J, Silvola J. 2001. CO2 exchange in an organic field growing barley or grass in eastern Finland. Global Change Biology 7: 679-692.CrossRefGoogle Scholar
  40. Marcolla B, Cescatti A. 2005. Experimental analysis of flux footprint for varying stability conditions in an alpine meadow. Agric. For. Meteorol. 135: 291-301.CrossRefGoogle Scholar
  41. Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbau MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D. 2002. Temperature response of parameters of a biochemically based model of photosynthesis: II. A review of experimental data. Plant, Cell and Environment 25: 1167-1179.CrossRefGoogle Scholar
  42. Monson RK, Sparks JP, Rosenstiel TN, Scott-Denton LE, Huxman TE, Harley PC, Turnipseed AA, Burns SP, Backlund B, Hu J. 2005. Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia: DOI:10.1007/s00442-005-0169-2
  43. Moore CJ. 1986. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology 37: 17-35.CrossRefGoogle Scholar
  44. Nieven JP, Campbell DI, Schipper LA, Blair IJ. 2005. Carbon exchange of grazed pasture on a drained peat soil. Global Change Biology 11: 607-618.CrossRefGoogle Scholar
  45. Novick KA, Stoy PC, Katul GG, Ellsworth DS, Siqueira MBS, Juang J, Oren R. 2004. Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia 138: 259-274.PubMedCrossRefGoogle Scholar
  46. Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S, Valentini R. 2002. Ecosystem respiration in two Mediterranean evergreen olm oak forests: drought effects and decomposition dynamics. Functional Ecology 16: 27-39.CrossRefGoogle Scholar
  47. Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, cheng Y, Grünzweig JM, Irvine J, Joffre R, Law BE, Lostau D, Miglietta F, Oechel W, Ourcival J-M, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D. 2003. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochem Cycles 17:1104. DOI:10.1029/2003GB002035 Google Scholar
  48. Rogiers N, Eugster W, Furger M, Siegwolf R. 2005. Effect of land management on ecosystem carbon fluxes at a subalpine grassland sites in the Swiss Alps. Theoretical and Applied Climatology 80: 187-203.CrossRefGoogle Scholar
  49. Ruimy A, Jarvis PG, Baldocchi DD, Saugier B. 1995. CO2 fluxes over plant canopies and solar radiation: a review. Advances in Ecological Research 26: 1-68.CrossRefGoogle Scholar
  50. Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA. 1999. A global terrestrial network of tower fluxes, flask sampling, ecosystem modelling and EOS data. Remote Sensing of Environment 70: 108–127.CrossRefGoogle Scholar
  51. Soussana JF, Allard V, Pilegaard K, Ambus P, Amman C, Campbell C, Ceschia E, Clifton-Brown J, Czobel S, Domingues R, Flechard C, Fuhrer J, Hensen A, Horvath L, Jones M, Kasper G, Martin C, Nagy Z, Neftel A, Raschi A, Baronti S, Rees RM, Skiba U, Stefani P, Manca G, Sutton M, Tuba Z, Valentini R. 2007. Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture Ecosystems and Environment 121: 121–134.CrossRefGoogle Scholar
  52. Steffen W, Noble I, Canadell J, Apps M, Schulze E-D, Jarvis P, Baldocchi D, Ciais P, Cramer W, Ehleringer J, Farquhar G, Field C, Ghazi A, Gifford R, Heimann M, Houghton R, Kabat P, Körner Ch, Lambin E, Linder S, Lloyd J, Mooney H, Murdiyarso D, Post W, Prentice C, Raupach M, Schimel D, Shvidenko A, Valentini R. 1998. The terrestrial carbon cycle: implications for the Kyoto protocol. Science 280: 1393–1394.CrossRefGoogle Scholar
  53. Suni T, Berninger F, Vesala T, Markkanen T, Hari P, Mäkelä A, Ilvesniemi H, Hänninen H, Nikinmaa E, Huttula T, Laurila T, Aurela M, Grelle A, Lindroth A, Arneth A, Shibistova O, Lloyd J. 2003. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biology 9: 1410-1426.CrossRefGoogle Scholar
  54. Suyker AE, Verma SB. 2001. Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prarie. Global Change Biology 7: 279-289.CrossRefGoogle Scholar
  55. Suyker AE, Verma SB, Burba GG, Arkebauer TJ, Walters DT, Hubbard KG. 2004. Growing season carbon dioxide exchange in irrigated and rainfed maize. Agricultural and Forest Meteorology 124: 1-13.CrossRefGoogle Scholar
  56. Suyker AE, Verma SB, Burba GG, Arkebauer TJ. 2005. Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season. Agricultural and Forest Meteorology 131: 180-190.CrossRefGoogle Scholar
  57. Theurillat J-P, Guisan A. 2001. Potential impact of climate change on vegetation in the European Alps: a review. Climate Change 50: 77-109.CrossRefGoogle Scholar
  58. Verburg PSJ, Arnone JA III, Obrist D, Schorran DE, Evans RD, Leroux-Swarthout D, Johnson DW, Luo Y, Coleman JS. 2004. Net ecosystem carbon exchange in two experimental grassland ecosystems. Global Change Biology 10: 498-508.CrossRefGoogle Scholar
  59. Vourlitis GL, Harazono Y, Oechel WC, Yoshimoto M, Mano M. 2000. Spatial and temporal variations in hectare-scale net CO2 flux, respiration and gross primary production of Arctic tundra ecosystems. Functional Ecology 14: 203-214.CrossRefGoogle Scholar
  60. Wan S, Luo Y. 2003. Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Global Biogeochem Cycles 17(2):1054, DOI:10.1029/2002GB001971 Google Scholar
  61. Webb EK, Pearman GI, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106: 85-100.CrossRefGoogle Scholar
  62. White R, Murray S, Rohweder M. 2000. Pilot analysis of global ecosystems (PAGE) grassland ecosystems. Washington, D.C.: World Resources InstituteGoogle Scholar
  63. Whitehead D, Griffin KL, Turnbull MH, Tissue DT, Engel VC, Brown KJ, Schuster WSF, Walcroft AS. 2003. Response of total night-time respiration to differences in total daily photosynthesis for leaves in a Quercus rubra L. canopy: implications for modelling canopy CO2 exchange. Global Change Biology 10: 925-938.CrossRefGoogle Scholar
  64. Whiting GJ, Bartlett DS, Fan S-M, Bakwin PS, Wofsy SC. 1992. Biosphere/atmosphere CO2 exchange in tundra ecosystems: community characteristics and relationships with multispectral reflectance. Journal of Geophysical Research 97(15):16671-16680.Google Scholar
  65. Wilczak JM, Oncley SP, Stage SA. 2001. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99: 127-150.CrossRefGoogle Scholar
  66. Wilsey BJ, Parent G, Roulet NT, Moore TR, Potvin C. 2002. Tropical pasture carbon cycling: relationships between C source/sink strength, above-ground biomass and grazing. Ecology Letters 5: 367-376.CrossRefGoogle Scholar
  67. Wohlfahrt G. 2004. Modelling fluxes and scalar concentrations of CO2, H2O and sensible heat within and above a mountain meadow canopy: a comparison of three Lagrangian models and three parameterisation options for the Lagrangian time scale. Boundary-Layer Meteorology 113: 43-80.CrossRefGoogle Scholar
  68. Wohlfahrt G, Sapinsky S, Tappeiner U, Cernusca A. 2001. Estimation of plant area index of grasslands from measurements of canopy radiation profiles. Agricultural and Forest Meteorology 109: 1–12.CrossRefGoogle Scholar
  69. Wohlfahrt G, Bahn M, Newesely Ch, Sapinsky S, Tappeiner U, Cernusca A. 2003. Canopy structure versus physiology effects on net photosynthesis of mountain grasslands differing in land use. Ecological Modelling 170: 407–426.CrossRefGoogle Scholar
  70. Wohlfahrt G, Anfang Ch, Bahn M, Haslwanter A, Newesely Ch, Schmitt M, Drösler M, Pfadenhauer J, Cernusca A. 2005a. Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agricultural and Forest Meteorology 128: 141-162Google Scholar
  71. Wohlfahrt G, Bahn M, Haslwanter A, Newesely Ch, Cernusca A. 2005b. Estimation of daytime ecosystem respiration to determine gross primary production of a mountain meadow. Agricultural and Forest Meteorology 130: 13–25Google Scholar
  72. Wohlfahrt G., Hammerle A, Haslwanter A, Bahn M, Tappeiner U, Cernusca A. 2007. Eddy covariance measurements of CO2 and energy fluxes above mountain grasslands in the Austrian Alps: challenges and results. Eos Transactions AGU 88(52) Fall Meeting Supplement: Abstract B23A-0915Google Scholar
  73. Wohlfahrt G., Hammerle A, Haslwanter A, Bahn M, Tappeiner U, Cernusca A. 2008. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of weather and management. J Geophys Res-Atmos 113:D08110. DOI:10.1029/2007JD009286
  74. Xu L, Baldocchi DD. 2003. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology 123: 79-96.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Georg Wohlfahrt
    • 1
  • Margaret Anderson-Dunn
    • 2
  • Michael Bahn
    • 1
  • Manuela Balzarolo
    • 3
  • Frank Berninger
    • 4
    • 5
  • Claire Campbell
    • 2
  • Arnaud Carrara
    • 6
  • Alessandro Cescatti
    • 7
    • 8
  • Torben Christensen
    • 9
  • Sabina Dore
    • 3
  • Werner Eugster
    • 10
  • Thomas Friborg
    • 11
  • Markus Furger
    • 12
  • Damiano Gianelle
    • 7
  • Cristina Gimeno
    • 6
  • Ken Hargreaves
    • 2
  • Pertti Hari
    • 4
  • Alois Haslwanter
    • 1
  • Torbjörn Johansson
    • 9
  • Barbara Marcolla
    • 7
  • Celia Milford
    • 2
  • Zoltan Nagy
    • 13
  • Eiko Nemitz
    • 2
  • Nele Rogiers
    • 12
    • 14
  • Maria J. Sanz
    • 6
  • Rolf T.W. Siegwolf
    • 12
  • Sanna Susiluoto
    • 4
  • Mark Sutton
    • 2
  • Zoltan Tuba
    • 13
  • Francesca Ugolini
    • 2
  • Riccardo Valentini
    • 3
  • Roberto Zorer
    • 15
  • Alexander Cernusca
    • 1
  1. 1.Universität Innsbruck, Institut für ÖkologieSternwartestr. 15Austria
  2. 2.Centre for Ecology and HydrologyPenicuikUnited Kingdom
  3. 3.Department of Forest Environment and ResourcesUniversity of TusciaViterboItaly
  4. 4.Department of Forest EcologyUniversity of HelsinkiViikinkari 7HelsinkiFinland
  5. 5.Department of Biological ScienceUniversity of Quebec at MontrealMontrealCanada
  6. 6.Fundacion CEAMPaternaSpain
  7. 7.Centro di Ecologia Alpina, Viote del Monte BondoneTrentoItaly
  8. 8.European Commission—DG Joint Research Centre, Institute for Environment and SustainabilityIspraItaly
  9. 9.Department of Physical Geography and Ecosystems AnalysisLunds UniversityLundSweden
  10. 10.Swiss Federal Institute of Technology ETH, Institute of Plant SciencesUniversitätsstr 2Switzerland
  11. 11.Institute of Geography, Copenhagen UniversityCopenhagenDenmark
  12. 12.Laboratory of Atmospheric ChemistryPaul-Scherrer InstituteVilligenSwitzerland
  13. 13.Department of Botany and Plant PhysiologySzent István UniversityGodolloHungary
  14. 14.Institute of Geography, University of BernBernSwitzerland
  15. 15.Istituto Agrario di S. Michele all’AdigeMichele all’AdigeItaly

Personalised recommendations