Advertisement

Ecosystems

, Volume 11, Issue 8, pp 1306–1317 | Cite as

Periodical Cicada Detritus Impacts Stream Ecosystem Metabolism

  • Holly L. Menninger
  • Margaret A. Palmer
  • Laura S. Craig
  • David C. Richardson
Article

Abstract

The emergence of 17-year periodical cicadas in Maryland, USA, in 2004 provided a unique opportunity to study the effect of a large, but temporally limited, resource pulse of arthropod detritus on stream ecosystem function. Cicada emergence was quantified in the forests adjacent to two small streams with different histories of riparian disturbance (Intact and Disturbed sites). We estimated the input of cicada detritus to the streams, described its retention and breakdown dynamics, and measured whole-stream respiration over the cicada flight season (May–July). Average emergence density was significantly greater at the Intact site, but average cicada detritus input rates were greater at the Disturbed site. Cicada detritus was locally retained within both streams and rapidly broke down. Daily whole-stream respiration (CR24) at both sites responded dramatically to the cicada pulse, with CR24 doubling pre-cicada measurements following the period of greatest cicada input (Intact: 12.82 → 23.78 g O2 m−2 d−1; Disturbed: 2.76 → 5.77 g O2 m−2 d−1). CR24 returned to baseline levels when cicada input decreased at the Intact site, but more than doubled again at the Disturbed site (13.14 g O2 m−2 d−1), despite a decline in cicada input rate. Differences in respiration response may be a function of differences in cicada input rates as well as differences in microbial community activity. The strong effects on stream ecosystem function exerted by a short but intense input of periodical cicada detritus may provide insights regarding the response of streams to other irregular resource pulses.

Keywords

allochthonous inputs subsidy resource pulse periodical cicadas ecosystem function Magicicada community respiration 

Notes

Acknowledgments

We thank members of the Palmer Stream Ecology Laboratory for their invaluable assistance with research design and fieldwork, particularly Brooke Hassett, Bob Smith, Chris Patrick, Jen Morse, Kat Cappillino, Matt Reardon, and Roshan Randeniya. We thank Andy Baldwin, Bob Denno, Irv Forseth, Bill Lamp, Mike Vanni, and the anonymous reviewers for suggestions that greatly improved earlier versions of this manuscript. This research was supported by a grant-in-aid from the Washington, DC Cosmos Club Foundation to HLM and an EPA STAR award (R828012) and NSF Award (DEB 9741101) to MAP. Contribution 4221 of the University of Maryland Center for Environmental Science.

References

  1. Addy K, Gold A, Nowicki B, McKenna J, Stolt M, Groffman P. 2005. Denitrification capacity in a subterranean estuary below a Rhode Island fringing salt marsh. Estuaries 28:896–908CrossRefGoogle Scholar
  2. Addy K, Kellogg DQ, Gold AJ, Groffman PM, Ferendo G, Sawyer C. 2002. In situ push-pull method to determine ground water denitrification in riparian zones. J Environ Qual 31:1017–24PubMedCrossRefGoogle Scholar
  3. Anderson WB, Polis GA. 1999. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118:324–32CrossRefGoogle Scholar
  4. Andrews EA. 1921. Periodical cicadas in Baltimore, Md. Sci Mon 12:310–29Google Scholar
  5. Baxter CV, Fausch KD, Murakami M, Chapman PL. 2004. Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85:2656–63CrossRefGoogle Scholar
  6. Baxter CV, Fausch KD, Saunders WC. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–20CrossRefGoogle Scholar
  7. Benfield EF. 1996. Leaf breakdown in stream ecosystems. In: Hauer FR, Lamberti GA, Eds. Methods in stream ecology. San Diego: Academic Press. pp 579–89Google Scholar
  8. Bott TL. 1996. Primary productivity and community respiration. In: Hauer FR, Lamberti GA, Eds. Methods in stream ecology. San Diego: Academic Press. pp 533–56Google Scholar
  9. Bott TL, Newbold JD, Arscott DB. 2006. Ecosystem metabolism in Piedmont streams: reach geomorphology modulates the influence of riparian vegetation. Ecosystems 9:398–421CrossRefGoogle Scholar
  10. Brookshire ENJ, Dwire KA. 2003. Controls on patterns of coarse organic particle retention in headwater streams. J North Am Benthol Soc 22:17–34CrossRefGoogle Scholar
  11. Brown JJ, Chippendale GM. 1973. Nature and fate of nutrient reserves of the periodical (17 year) cicada. J Insect Physiol 19:607–14CrossRefGoogle Scholar
  12. Burkholder JM, Mallin MA, Glasgow Jr HB, Larsen LM, McIver MR, Shank GC, Deamer-Melia N, Briley DS, Springer J, Touchette BW, Hannon EK. 1997. Impacts to a coastal river and estuary from rupture of a large swine waste holding lagoon. J Environ Qual 26:1451–66CrossRefGoogle Scholar
  13. Carpenter SR. 1989. Replication and treatment strength in whole-lake experiments. Ecology 70:453–63CrossRefGoogle Scholar
  14. Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES. 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–50CrossRefGoogle Scholar
  15. Cloe WW, Garman GC. 1996. The energetic importance of terrestrial arthropod inputs to three warm-water streams. Freshw Biol 36:105–14CrossRefGoogle Scholar
  16. Cory E, Knight P. 1937. Observations on brood X of the periodical cicada in Maryland. J Econ Entomol 30:287–94Google Scholar
  17. Cottenie K, De Meester L. 2003. Comment to Oksanen (2001): reconciling Oksanen (2001) and Hurlbert (1984). OIKOS 100:394–6CrossRefGoogle Scholar
  18. Dodds WK. 2006. Eutrophication and trophic state in rivers and streams. Limnol Oceanogr 51:671–80CrossRefGoogle Scholar
  19. Dybas HS, Davis DD. 1962. A population census of seventeen-year periodical cicadas (Homoptera:Cicadidae: Magicicada). Ecology 43:432–44CrossRefGoogle Scholar
  20. Findlay SEG, Sinsabaugh RL, Sobczak WV, Hoostal M. 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol Oceanogr 48:1608–17CrossRefGoogle Scholar
  21. Fisher SG, Likens GE. 1972. Stream ecosystem—organic energy budget. BioScience 22:33–5CrossRefGoogle Scholar
  22. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–9PubMedCrossRefGoogle Scholar
  23. Garman GC, Macko SA. 1998. Contribution of marine-derived organic matter to an Atlantic coast, freshwater, tidal stream by anadromous clupeid fishes. J North Am Benthol Soc 17:277–85CrossRefGoogle Scholar
  24. Gessner MO, Chauvet E. 2002. A case for using litter breakdown to assess functional stream integrity. Ecol Appl 12:498–510CrossRefGoogle Scholar
  25. Graham C, Cochran AB. 1954. The periodical cicada in Maryland in 1953. J Econ Entomol 47:242–4Google Scholar
  26. Heath JE. 1968. Thermal synchronization of emergence in periodical 17-year cicadas (Homoptera, Cicadidae, Magicicada). Am Midl Nat 80:440–8CrossRefGoogle Scholar
  27. Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211CrossRefGoogle Scholar
  28. Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO. 1998a. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279:1023–6PubMedCrossRefGoogle Scholar
  29. Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO. 1998b. Mast seeding and Lyme disease. Trends Ecol Evol 13:506CrossRefGoogle Scholar
  30. Judd KE, Crump BC, Kling GW. 2006. Variation in dissolved organic matter controls bacterial production and community composition. Ecology 87:2068–79PubMedCrossRefGoogle Scholar
  31. Karban R. 1982. Increased reproductive success at high-densities and predator satiation for periodical cicadas. Ecology 63:321–8CrossRefGoogle Scholar
  32. Kellogg DQ, Gold AJ, Groffman PM, Addy K, Stolt MH, Blazejewski G. 2005. In situ ground water denitrification in stratified, permeable soils underlying riparian wetlands. J Environ Qual 34:524–33PubMedCrossRefGoogle Scholar
  33. Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberber O. 2006. SAS for mixed models, 2nd edn. Cary (NC): SAS Institute. p 814Google Scholar
  34. Maier CT. 1982. Abundance and distribution of the seventeen-year periodical cicada, Magicicada septendecim (Linnaeus) (Hemiptera: Cicadidae—Brood II), in Connecticut. Proc Entomol Soc Wash 84:430–9Google Scholar
  35. Marlatt CL. 1907. The periodical cicada. Bull USDA Bur Entomol 71:1–181Google Scholar
  36. Menge BA, Lubchenco J, Bracken MES, Chan F, Foley MM, Freidenburg TL, Gaines SD, Hudson G, Krenz C, Leslie H, Menge DNL, Russell R, Webster MS. 2003. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc Natl Acad Sci USA 100:12229–34PubMedCrossRefGoogle Scholar
  37. Menninger HL. 2007. Terrestrial-aquatic linkages in human-altered landscapes [dissertation]. College Park (MD): University of Maryland. p 138Google Scholar
  38. Moore AA, Palmer MA. 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol Appl 15:1169–77CrossRefGoogle Scholar
  39. Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Marti E, Ashkenas L, Bowden WB, Dodds WK, McDowell WH, Paul MJ, Peterson BJ. 2001. Inter-biome comparison of factors controlling stream metabolism. Freshw Biol 46:1503–17CrossRefGoogle Scholar
  40. Naiman RJ, Bilby RE, Schindler DE, Helfield JM. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399–417CrossRefGoogle Scholar
  41. Nakano S, Miyasaka H, Kuhara N. 1999. Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80:2435–41Google Scholar
  42. Nowlin WH, Gonzalez MJ, Vanni MJ, Stevens MHH, Fields MW, Valente JJ. 2007. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities. Ecology 88:2174–86PubMedCrossRefGoogle Scholar
  43. Nowlin WH, Vanni MJ, Yang LH. 2008. Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89:647–59PubMedCrossRefGoogle Scholar
  44. Oksanen L. 2001. Logic of experiments in ecology: is pseudoreplication a pseudoissue? OIKOS 94:27–38CrossRefGoogle Scholar
  45. Ostfeld RS, Jones CG, Wolff JO. 1996. Of mice and mast. BioScience 46:323–30CrossRefGoogle Scholar
  46. Ostfeld RS, Keesing F. 2000. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol 15:232–7PubMedCrossRefGoogle Scholar
  47. Ostrofsky ML. 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. J North Am Benthol Soc 16:750–9CrossRefGoogle Scholar
  48. Owens M, Edwards RW, Gibbs JW. 1964. Some reaeration studies in streams. Air Water Pollut 8:469–86PubMedGoogle Scholar
  49. Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D. 2004. Whole-lake carbon−13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–3PubMedCrossRefGoogle Scholar
  50. Petersen RC, Cummins KW. 1974. Leaf processing in a woodland stream. Freshw Biol 4:343–68CrossRefGoogle Scholar
  51. Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316CrossRefGoogle Scholar
  52. Polis GA, Hurd SD. 1995. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci USA 92:4382–6PubMedCrossRefGoogle Scholar
  53. Pray CL, Nowlin WH, Vanni MJ. 2008. Deposition and decomposition of periodical cicadas (Homoptera: Cicadidae: Magicicada) in woodland aquatic ecosystems. J North Am Benthol Soc (in press)Google Scholar
  54. Roberts BJ, Mulholland PJ, Hill WR. 2007. Multiple scales of temporal variability in ecosystem metabolism rates: results of 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606CrossRefGoogle Scholar
  55. Rodenhouse NL, Bohlen PJ, Barrett GW. 1997. Effects of woodland shape on the spatial distribution and density of 17-year periodical cicadas (Homoptera: Cicadidae). Am Midl Nat 137:124–35CrossRefGoogle Scholar
  56. Schmitt JB. 1974. The distribution of brood ten of the periodical cicadas in New Jersey in 1970. J N Y Entomol Soc 82:189–201Google Scholar
  57. Sokal RR, Rohlf FJ. 1995. Biometry: the principles and practice of statistics in biological research. 3rd edn. New York: WH Freeman. p 887Google Scholar
  58. Speaker RW, Luchessa KJ, Franklin JF, Gregory SV. 1988. The use of plastic strips to measure leaf retention by riparian vegetation in a coastal Oregon stream. Am Midl Nat 120:22–31CrossRefGoogle Scholar
  59. Stewart-Oaten A, Murdoch WW, Parker KR. 1986. Environmental impact assessment: “pseudoreplication” in time? Ecology 67:929–40CrossRefGoogle Scholar
  60. Swan CM, Palmer MA. 2004. Leaf diversity alters litter breakdown in a Piedmont stream. J North Am Benthol Soc 23:15–28CrossRefGoogle Scholar
  61. Uehlinger U. 2006. Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a flood prone river during a 15-year period. Freshw Biol 51:938–50CrossRefGoogle Scholar
  62. Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–4CrossRefGoogle Scholar
  63. Webster JR, Benfield EF. 1986. Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–94CrossRefGoogle Scholar
  64. Webster JR, Covich AP, Tank JL, Crockett TV. 1994. Retention of coarse organic particles in streams in the southern Appalachian mountains. J North Am Benthol Soc 13:140–50CrossRefGoogle Scholar
  65. Webster JR, Meyer JL. 1997. Organic matter budgets for streams: a synthesis. J North Am Benthol Soc 16:141–61CrossRefGoogle Scholar
  66. Webster JR, Wallace JB, Benfield EF. 1995. Organic processes in streams of the eastern United States. In: Cushing CE, Cummins KW, Minshall GW, Eds. River and stream ecosystems. Amsterdam: Elsevier Science. pp 117–87Google Scholar
  67. Whiles MR, Callaham Jr MA, Meyer CK, Brock BL, Charlton RE. 2001. Emergence of periodical cicadas (Magicicada cassini) from a Kansas riparian forest: densities, biomass, and nitrogen flux. Am Midl Nat 145:176–87CrossRefGoogle Scholar
  68. White J. 1980. Resource partitioning by ovipositing cicadas. Am Nat 115:1–28CrossRefGoogle Scholar
  69. White J, Strehl CE. 1978. Xylem feeding by periodical cicada nymphs on tree toots. Ecol Entomol 3:323–7CrossRefGoogle Scholar
  70. Williams KS, Simon C. 1995. The ecology, behavior, and evolution of periodical cicadas. Annu Rev Entomol 40:269–95CrossRefGoogle Scholar
  71. Williams KS, Smith KG, Stephen FM. 1993. Emergence of 13-yr periodical cicadas (Cicadidae, Magicicada)—phenology, mortality, and predator satiation. Ecology 74:1143–52CrossRefGoogle Scholar
  72. Yang LH. 2004. Periodical cicadas as resource pulses in North American forests. Science 306:1565–7PubMedCrossRefGoogle Scholar
  73. Yang LH. 2006. Periodical cicadas use light for oviposition site selection. Proc R Soc B Biol Sci 273:2993–3000CrossRefGoogle Scholar
  74. Yang LH, Bastow JL, Spence KO, Wright AN. 2008. What can we learn from pulses? Ecology 89:621–34PubMedCrossRefGoogle Scholar
  75. Young SA, Kovalak WP, Del Signore KA. 1978. Distances traveled by autumn-shed leaves introduced into a woodland stream. Am Midl Nat 100:217–20CrossRefGoogle Scholar
  76. Zhang Y, Negishi JN, Richardson JS, Kolodziejczyk R. 2003. Impacts of marine-derived nutrients on stream ecosystem functioning. Proc R Soc Lond B Biol Sci 270:2117–23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Holly L. Menninger
    • 1
    • 4
  • Margaret A. Palmer
    • 2
  • Laura S. Craig
    • 1
  • David C. Richardson
    • 3
  1. 1.Behavior, Ecology, Evolution, and Systematics ProgramUniversity of MarylandCollege ParkUSA
  2. 2.Chesapeake Biological LaboratoryUniversity of Maryland Center for Environmental ScienceSolomonsUSA
  3. 3.Marine, Estuarine, and Environmental Science ProgramUniversity of MarylandCollege ParkUSA
  4. 4.Invasive Species Research InstituteCornell UniversityIthacaUSA

Personalised recommendations