Advertisement

Ecosystems

, Volume 11, Issue 7, pp 1198–1210 | Cite as

Trophic Transfers from Seagrass Meadows Subsidize Diverse Marine and Terrestrial Consumers

  • Kenneth L. Heck Jr.Email author
  • Tim J. B. Carruthers
  • Carlos M. Duarte
  • A. Randall Hughes
  • Gary Kendrick
  • Robert J. Orth
  • Susan W. Williams
MINIREVIEW

Abstract

In many coastal locations, seagrass meadows are part of a greater seascape that includes both marine and terrestrial elements, each linked to the other via the foraging patterns of consumers (both predators and herbivores), and the passive drift of seagrass propagules, leaves, roots and rhizomes, and seagrass-associated macroalgal detritus. With seagrasses declining in many regions, the linkages between seagrass meadows and other habitats are being altered and diminished. Thus, it is timely to summarize what is known about the prevalence and magnitude of cross-habitat exchanges of seagrass-derived energy and materials, and to increase awareness of the importance of seagrasses to adjacent and even distant habitats. To do so we examined the literature on the extent and importance of exchanges of biomass between seagrass meadows and other habitats, both in the form of exported seagrass biomass as well as transfers of animal biomass via migration. Data were most abundant for Caribbean coral reefs and Australian beaches, and organisms for which there were quantitative estimates included Caribbean fishes and North American migratory waterfowl. Overall, data from the studies we reviewed clearly showed that seagrass ecosystems provide a large subsidy to both near and distant locations through the export of particulate organic matter and living plant and animal biomass. The consequences of continuing seagrass decline thus extend far beyond the areas where seagrasses grow.

Keywords

seagrass connectivity trophic subsidy consumers 

Notes

Acknowledgments

We thank our colleagues in the Global Seagrass Trajectories Working Group, which is supported by the National Center for Ecological Analysis and Synthesis, a Center funded by NSF (Grant #DEB-00-72909), the University of California at Santa Barbara, and the State of California. We also thank Dr. Just Cebrian, who kindly provided the information contained in Table 1, Dottie Byron whose comments significantly improved the manuscript and Carolyn Wood who prepared the final draft of this manuscript. This is Bodega Marine Laboratory, University of California-Davis Contribution Number 2428, Dauphin Island Sea Lab Contribution Number 394, UMCES Contribution Number 4219, and VIMS Contribution Number 2966.

References

  1. Bach SD, Thayer GW, LaCroix MW. 1986. Export of detritus from eelgrass (Zostera marina) beds near Beaufort, North Carolina, USA. Mar Ecol Prog Ser 28: 265–278CrossRefGoogle Scholar
  2. Bakus GJ. 1969. Energetics and feeding in shallow marine waters. Int Rev Gen Exp Zool 4: 275–369Google Scholar
  3. Beck MW, Heck KL Jr, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP. 2001. The identification, conservation and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51: 633–641CrossRefGoogle Scholar
  4. Bradley RA, Bradley DW. 1993. Wintering shorebirds increase after kelp (Macrocystis) recovery. Condor 95: 372–376CrossRefGoogle Scholar
  5. Carlton JT, Hodder J. 2003. Maritime mammals: terrestrial mammals as consumers in marine intertidal communities. Mar Ecol Prog Ser 256: 271–286CrossRefGoogle Scholar
  6. Cebrian J, Duarte CM. 1998. Patterns in leaf herbivory on seagrasses: the importance of the specific leaf growth-rate. Aquat Bot 60: 67–82CrossRefGoogle Scholar
  7. Cebrian J, Pedersen MF, Kroeger KD, Valiela I. 2000. Fate of production of the seagrass Cymodocea nodosa in different stages of meadow formation. Mar Ecol Prog Ser 204: 119–130CrossRefGoogle Scholar
  8. Coleman FC, Koenig CC, Eklund AM, Grimes CB. 1999. Management and conservation of temperate reef fishes in the grouper-snapper complex of the southeastern United States. In: Musick JA, Ed. Life in the slow lane. American Fisheries Society Symposium. 23 pGoogle Scholar
  9. Connolly RM, Gorman D, Guest MA. 2005. Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia 144: 684–691PubMedCrossRefGoogle Scholar
  10. Cottam C, Lynch JJ, Nelson AL. 1944. Food habits and management of American sea brant. J Wildl Manage 8: 36–56CrossRefGoogle Scholar
  11. Coupland GT, Duarte CM, Walker DI. 2007. High metabolic rates in beach cast communities. Ecosystems 10: 1341–1350CrossRefGoogle Scholar
  12. Creed JC. 2004. Capybara (Hydrochaeris hydrochaeris Rodentia: Hydrochaeridae): a mammalian seagrass herbivore. Estuaries 27: 197–200CrossRefGoogle Scholar
  13. Dacey GH. 1985. Synopsis of biological data on the pinfish, Lagodon rhomboides (Pisces: Sparidae). NOAA Technical Report, National Marine Fisheries Service, No. 23. 32pGoogle Scholar
  14. Distel DL, Roberts SJ. 1997. Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and Xylophaga washingtona. Biol Bull 192: 253–261PubMedCrossRefGoogle Scholar
  15. Dorenbosch M, Grol MGG, Nagelkerken I, van der Velde G. 2005. Distribution of coral reef fishes along a coral reef-seagrass gradient: edge effects and habitat segregation. Mar Ecol Prog Ser 299: 277–288CrossRefGoogle Scholar
  16. Dorenbosch M, Grol MGG, Nagelkerken I, van der Velde G. 2006. Different surrounding landscapes may result in different fish assemblages in east African seagrass beds. Hydrobiologia 563:45–60CrossRefGoogle Scholar
  17. Duarte CM, Middelburg JJ, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2: 1–8Google Scholar
  18. Eggleston DB, Grover JJ, Lipcius RN 1998. Ontogenetic diet shifts in Nassau grouper: trophic linkages and predatory impact. Bull Mar Sci 63: 111–126Google Scholar
  19. Erhardt NM, Legault CM, Restrepo VR. 2001. Density-dependent linkage between juveniles and recruitment for pink shrimp (Farfantepenaeus duororum) in southern Florida. ICES J Mar Sci 58: 1100–1105CrossRefGoogle Scholar
  20. Figuerola J, Green AJ. 2002. Dispersal of aquatic organisms by waterfowl: a review of past research and priorities for future studies. Freshw Biol 47: 483–494CrossRefGoogle Scholar
  21. Fry B, Virnstein RW. 1998. Leaf production and export of the seagrass Syringodium filiforme Kuetz in Indian River Lagoon, Florida. Aquat Bot 30: 261–266CrossRefGoogle Scholar
  22. Fujiwara M, Highsmith RC. 1997. Harpacticoid copepods: potential link between inbound adult salmon and outbound juvenile salmon. Mar Ecol Prog Ser 158:205–216CrossRefGoogle Scholar
  23. Ganter B. 2000. Seagrass (Zostera spp.) as food for brent geese (Branta bernicla): an overview. Helgol Mar Res 54: 63–70CrossRefGoogle Scholar
  24. Gillanders BW 2006. Seagrass, fish and fisheries. Larkum AWD, Orth RJ, Duarte C, eds. Seagrasses: biology, ecology and conservation. Springer, The Netherlands p. 503–536Google Scholar
  25. Gillanders BW, Able KW, Brown JA, Eggleston DB, Sheridan PF. 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Mar Ecol Prog Ser 247: 281–295CrossRefGoogle Scholar
  26. Goldman B, Talbot FH 1976. Aspects of the ecology of coral reef fishes. Jones OA, Endean R eds Biology and geology of coral reefs, Vol. III. Academic Press, New York. p. 125–163Google Scholar
  27. Grabowski JH, Hughes AR, Kimbro DL, Dolan MA. 2005. How habitat setting influences restored oyster reef communities. Ecology 86: 1926–1935CrossRefGoogle Scholar
  28. Greenway M. 1976. The grazing of Thalassia testudinum in Kingston Harbour, Jamaica. Aquat Bot 2: 117-126CrossRefGoogle Scholar
  29. Greenway M. 1995. Trophic relationships of macrofauna within a Jamaican seagrass meadow and the role of the echinoid Lytechinus varietatus (Lamarck). Bull Mar Sci 56: 719–736Google Scholar
  30. Grober-Dunsmore R, Frazer TK, Lindgerg WJ, Beets J. 2007. Reef fish and habitat relationships in a Caribbean seascape: the importance of reef context. Coral Reefs 26: 201–216CrossRefGoogle Scholar
  31. Gunter G 1967. Some relationships of estuaries to the fisheries of the Gulf of Mexico Lauff GH, ed. Estuaries. Washington D.C.: American Association for the Advancement of Science. p. 621–638Google Scholar
  32. Hansen DJ. 1969. Food, growth, reproduction and abundance of pinfish, Lagodon rhomboides, and Atlantic croaker, Micropogon undulatus, near Pensacola, Florida 1963–1965. Fish Bull 68: 135–156Google Scholar
  33. Harrison PG. 1989. Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat Bot 23: 263–288CrossRefGoogle Scholar
  34. Hay WP. 1905. The life history of the blue crab, Callinectes sapidus. U.S. Bureau of Fisheries ReportGoogle Scholar
  35. Heck KL Jr, Weinstein MP. 1989. Feeding habits of juvenile reef fishes associated with Panamanian seagrass meadows. Bull Mar Sci 45: 629–635Google Scholar
  36. Hemminga MA, Slim FJ, Kazungu J, Ganssen GM, Nieuwenhuize J, Kruyt NM. 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Mar Ecol Prog Ser 106: 291–301CrossRefGoogle Scholar
  37. Hildebrand SF, Schroeder WC. 1928. Fishes of Chesapeake Bay. Bull US Bur Fish 43: 1–366Google Scholar
  38. Holmer M, Andeson FO, Nielsen SL, Henricus TSB. 2001. The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Aquat Bot 70: 29–38CrossRefGoogle Scholar
  39. Hyndes GA, Lavery PS. 2005. Does transported seagrass provide an important trophic link in unvegetated, nearshore areas? Estuar Coast Shelf Sci 63: 633–643CrossRefGoogle Scholar
  40. Irlandi EA, Crawford MK. 1997. Habitat linkages: the effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish. Oceologia 110: 222–230CrossRefGoogle Scholar
  41. Jackson J. 1997. Reefs since Columbus. In: Proceedings of the 8th International Coral Reef Symposium Vol. 1, pp 97–106Google Scholar
  42. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629–638PubMedCrossRefGoogle Scholar
  43. Josselyn MN, Cailliet G, Niesen T, Cowen R, Hurley A, Conner J, Hawes S. 1983. Composition, export and faunal utilization of drift vegetation in the Salt River submarine canyon. Estuar Coast Shelf Sci 17: 447–465CrossRefGoogle Scholar
  44. Kantrud HA. 1991. Widgeon grass (Ruppia maritima): a literature review. U.S. Fish & Wildlife Service, Fish & Wildlife Research 10. 58 pGoogle Scholar
  45. Kilar JA, Norris JN. 1988. Composition, export and import of drift vegetation on a tropical, plant-dominated, fringing-reef platform (Caribbean Panama). Coral Reefs 7: 93–103CrossRefGoogle Scholar
  46. Kirkman H, Kendrick GA. 1997. Ecological significance of commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review. J Appl Phycol 9: 311–326CrossRefGoogle Scholar
  47. Kirkman H, Reid DD. 1979. A study of the role of the seagrass Posidonia australis in the carbon budget of an estuary. Aquat Bot 7: 173–183CrossRefGoogle Scholar
  48. Lenanton RCJ, Caputi N. 1989. The roles of food supply and shelter in the relationship between fishes, in particular Cnidoglanis macrocephalus (Valenciennes), and detached macrophytes in the surf zone of sandy beaches. J Exp Mar Biol Ecol 128: 165–176CrossRefGoogle Scholar
  49. Lenanton RCJ, Roberson AI, Hansen JA. 1982. Nearshore accumulations of detached macrophytes as nursery areas for fish. Mar Ecol Prog Ser 9: 51–57CrossRefGoogle Scholar
  50. Lugendo BR, Pronker A, Cornelissen I, de Groene A, Nagelkerken I, Dorenbosch M, van der Velde G, Mgaya YD. 2005. Habitat utilization by juveniles of commercially important fish species in a marine embayment in Zanzibar, Tanzania. Aquat Living Resour 18: 149–158CrossRefGoogle Scholar
  51. Marba N, Holmer M, Gacia E, Barron C 2006. Seagrass beds and coastal biogeochemistry Larkum AWD, Orth RJ, Duarte C, eds. Seagrasses: biology, ecology and conservation. Springer, The Netherlands p. 135–157Google Scholar
  52. Marguillier S, van der Velde G, Dehairs F, Hemminga MA, Rajagopal S. 1997. Trophic relationships in an interlinked mangrove-seagrass ecosystem as traced by δ13C and δ15N. Mar Ecol Prog Ser 151: 115–121CrossRefGoogle Scholar
  53. Mateo MA, Romero J. 1997. Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar Ecol Prog Ser 151: 43–53CrossRefGoogle Scholar
  54. Mateo MA, Sanchez-Lizaso JL, Romero J. 2003. Posidonia oceanica “Banquettes”: a preliminary assessment of the relevance for meadow carbon and nutrient budgets. Estuar Coast Shelf Sci 56: 85–90CrossRefGoogle Scholar
  55. Mateo MA, Cebrian J, Dunton K, Mutchler T 2006. Carbon flux in seagrass ecosystems. Larkum AWD, Orth RJ, Duarte C, eds Seagrasses: biology, ecology and conservation. Springer, the Netherlands p. 159–192Google Scholar
  56. McAfee ST, Morgan SG. 1996. Resource use by five sympatric parrotfishes in the San Blas Archipelago, Panama. Mar Biol 125: 427-437Google Scholar
  57. McConnaughey T, McRoy CP. 1979. 13C label identifies eelgrass (Zostera marina) carbon in an Alaskan estuarine food web. Mar Biol 53: 263–269CrossRefGoogle Scholar
  58. Meyer JL, Schultz ET. 1985a. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnol Oceanogr 30: 146–156Google Scholar
  59. Meyer JL, Schultz ET. 1985b. Tissue condition and growth rate of corals associated with schooling fish. Limnol Oceanogr 30: 157–166Google Scholar
  60. Meyer JL, Schultz ET, Helfman GS. 1983. Fish schools: an asset to corals. Science 220: 1047–1048PubMedCrossRefGoogle Scholar
  61. Micheli F, Peterson CH. 1999. Estuarine vegetated habitats as corridors for predator movements. Conserv Biol 13: 869–881CrossRefGoogle Scholar
  62. Minello T 1999. Nekton densities in shallow estuarine habitats of Texas and Louisiana and the identification of essential fish habitat Benaka LR, ed. Fish habitat: essential fish habitat and rehabilitation. Bethesda, MD: American Fisheries Society. p. 43–75Google Scholar
  63. Moore JE, Colwell MA, Mathis RL, Black JM. 2004. Staging of Pacific flyway brant in relation to eelgrass abundance and site isolation, with special consideration of Humboldt Bay. Calif Biol Conserv 115: 475–486Google Scholar
  64. Nagelkerken I, van der Velde G. 2004a. Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? Mar Ecol Prog Ser 274: 143–151CrossRefGoogle Scholar
  65. Nagelkerken I, van der Velde G. 2004b. Relative importance of interlinked mangroves and seagrass beds as feeding habitats for juvenile reef fish on a Caribbean island. Mar Ecol Prog Ser 274: 153–156CrossRefGoogle Scholar
  66. Nagelkerken I, Kleijnen S, Klop T, van den Brand RACJ, Cocheret de la Moriniere E, van der Velde G. 2001. Dependence of Caribbean reef fishes on mangroves and seagrass beds as nursery habitats: a comparison of fish faunas between bays with and without mangroves/seagrass beds. Mar Ecol Prog Ser 214: 225–235CrossRefGoogle Scholar
  67. Nagelkerken I, Roberts CM, van der Velde G, Dorenbosch M, van Riel MC, Cocheret de la Moriniere E, Nienhuis PH. 2002. How important are mangroves and seagrass beds for coral reef fish? The nursery hypothesis tested on an island scale. Mar Ecol Prog Ser 244: 299–305CrossRefGoogle Scholar
  68. Ochieng CA, Erftemeijer PLA. 1999. Accumulation of seagrass beach cast along the Kenyan coast: a quantitative assessment. Aquat Bot 65: 221–238CrossRefGoogle Scholar
  69. Ogden JC 1980. Faunal relationships in Caribbean seagrass beds Phillips RC, McRoy CP, editors. Handbook of seagrass biology. An ecosystem perspective, Garland STPM Press. New York. p. 173–198Google Scholar
  70. Ogden JC, Ehrlich PR 1977. Behavior of heterotypic resting schools of juvenile grunts (Pomasyidae). Mar Biol 42: 273–280CrossRefGoogle Scholar
  71. Orth RJ, van Montfrans J. 1990. Utilization of marsh and seagrass habitats by early stages of Callinectes sapidus: a latitudinal perspective. Bull Mar Sci 46: 126–144Google Scholar
  72. Orth RJ, Heck KL Jr, van Montfrans J. 1984. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7: 339–350CrossRefGoogle Scholar
  73. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987–996CrossRefGoogle Scholar
  74. Ott J. 1980. Growth and production in Posidonia oceanica (L.) Delile. P.S.Z.N. I: Mar Ecol 1: 47–64CrossRefGoogle Scholar
  75. Ott J, Maurer L 1977. Strategies of the energy transfer from marine macrophytes to consumer levels: the Posidonia oceanica example Keegan BF, O’Ceidigh P, Boaden PJS, eds Biology of benthic organisms. Pergamon Press, New York, p. 493–502Google Scholar
  76. Overholtzer KL, Motta PJ 1999. Comparative resource use by juvenile parrotfishes in the Florida Keys. Mar Ecol Prog Ser 177: 177–187CrossRefGoogle Scholar
  77. Pacific Flyway Council. 2002. Pacific Flyway management plan for Pacific brant. Pacific Flyway Study Committee. Portland, OR: U.S. Fish and Wildlife Service. 40 p. + appendicesGoogle Scholar
  78. Pergent G, Romero J, Pergent-Martini C, Mateo MA, Boudouresque CF. 1994. Primary production, stocks, and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar Ecol Prog Ser 106: 139–146CrossRefGoogle Scholar
  79. Persson L, Bengtsson J, Menge BA, Powe ME 1996. Productivity and consumer regulation – concepts, patterns, and mechanisms Polis G, Winemiller KO, eds. Food webs. Chapman & Hall, New York, p. 396–434Google Scholar
  80. Peterson CGJ. 1918. The sea bottom and its production of fish food. A survey of the work done in connection with the valuation of the Danish waters from 1883–1917. Rep Danish Biol Station 25: 1–62Google Scholar
  81. Polis GA, Strong DR. 1996. Food webs complexity and community dynamics. Am Nat 147: 813-846CrossRefGoogle Scholar
  82. Polunin NVC 1996. Trophodynamics of reef fisheries productivity Polunin NVC, Roberts CM, eds. Reef fisheries. Chapman and Hall, London p. 113–135Google Scholar
  83. Randall J. 1965. Grazing effect on seagrasses by herbivorous reef fish in the West Indies. Ecology 46: 255–260CrossRefGoogle Scholar
  84. Randall J. 1967. Food habits of reef fishes of the West Indies. Stud Trop Oceanogr 5: 665–847Google Scholar
  85. Robertson AI, Lucas JS. 1983. Food choice, feeding rates, and the turnover of macrophytes biomass by a surf-zone inhabiting amphipod. J Exp Mar Biol Ecol 72: 99–124CrossRefGoogle Scholar
  86. Roest AI. 1993. Ground squirrels feeding on eelgrass. Calif Fish Game 79: 85–86Google Scholar
  87. Rose MD, Polis GA. 1998. The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79: 998–1007CrossRefGoogle Scholar
  88. Schindler DE, Scheuerell MD, Moore JW, Gende SM, Francis TB, Palen WJ. 2003. Pacific salmon and the ecology of coastal ecosystems. Front Ecol Environ 1: 31–37Google Scholar
  89. Simenstad CA, Wissmar RC. 1985. δ13C evidence of the origins and fates of organic carbon in estuarine and nearshore food webs. Mar Ecol Prog Ser 22: 141–152CrossRefGoogle Scholar
  90. Simenstad CA, Fresh KL, Salo EO. 1982. The role of Puget Sound and Washington coastal estuaries in the life history of Pacific salmon: an unappreciated function. In: Kennedy VS, Ed. Estuarine comparisons. Academic Press, Inc. pp 343–364Google Scholar
  91. Starck WA II, Schroeder RE. Eds. 1971. Investigations on the gray snapper, Lutjanus griseus. Studies in Tropical Oceanography # 10. Coral Gables, FL, 224 ppGoogle Scholar
  92. Suchanek TH, Williams SL, Ogden JC, Hubbard DK, Gill LP. 1985. Utilization of shallow-water seagrass detritus by Caribbean deep sea macrofauna: del C-13 evidence. Deep-Sea Res 32: 201–214CrossRefGoogle Scholar
  93. Thayer GW, Wolfe DA, Williams RB. 1975. The impact of man on seagrass systems. Am Sci 63:288–296Google Scholar
  94. Thayer GW, Fonseca MS, Kenworthy WJ. 1984. Restoration of seagrass meadows for enhancement of nearshore productivity. In: Chao NL, Kirby-Smith W, Eds. Proceedings International Symposium of Utilization of Coastal Ecosystems: Planning, Pollution and Productivity. Rio Grande, Brazil. pp 259–278Google Scholar
  95. Thresher RE, Nichols PD, Gunn JS, Bruce BD, Furlani DM. 1992. Seagrass detritus as the basis of a coastal planktonic food chain. Limnol Oceanogr 37: 1754–1758Google Scholar
  96. Turner RE. 1977. Intertidal vegetation and commercial yields of penaeid shrimp. Trans Am Fish Soc 106: 411–416CrossRefGoogle Scholar
  97. Valentine JF, Duffy JE 2006. The central role of grazing in seagrass ecosystems Larkum AWD, Orth RJ, Duarte CM, eds. Seagrasses: biology, ecology and conservation. Springer, The Netherlands p. 463–501Google Scholar
  98. Valentine JF, Heck KL Jr. 1993. Mussels in seagrass beds: their influence on macroinvertebrate abundance and production and macrophyte biomass in the northern Gulf of Mexico. Mar Ecol Prog Ser 96: 63–74CrossRefGoogle Scholar
  99. Valentine JF, Heck KL Jr. 1999. Seagrass herbivory: evidence for the continual grazing of marine grasses. Mar Ecol Prog Ser 176: 291–302CrossRefGoogle Scholar
  100. Valentine JF, Heck KL Jr. 2005. Perspective review of the impacts of overfishing on coral reef food web linkages. Coral Reefs 24: 209–213CrossRefGoogle Scholar
  101. Valiela I, Rutecki D, Fox S. 2004. Salt marshes: biological controls of food webs in a diminishing environment. J Exp Mar Biol Ecol 300: 131–159CrossRefGoogle Scholar
  102. Vetter EW. 1994. Hotspots of benthic production. Nature 372: 47CrossRefGoogle Scholar
  103. Vetter EW. 1998. Population dynamics of a dense assemblage of marine detritivores. J Exp Mar Biol Ecol 226: 131–161CrossRefGoogle Scholar
  104. Waterbury JB, Calloway CB, Turner RD. 1983. A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). Science 221: 1401–1403PubMedCrossRefGoogle Scholar
  105. Wernberg T, Vanderklift MA, How J, Lavery PS. 2006 Export of detached macroalgae to seagrass beds from adjacent reefs. Oecologia 147:692–701PubMedCrossRefGoogle Scholar
  106. Williams SW, Heck KL Jr 2001. Seagrass communities Bertness M, Gaines S, Hay M, eds Marine community ecology. Sinauer Press, Sunderland, MA p. 317–337Google Scholar
  107. Wolff T 1980. Animals associated with seagrass in the deep sea Phillips RC, McRoy CP, eds Handbook of seagrass biology. Garland STPM Press, New York p. 199–224Google Scholar
  108. Ziegler S, Benner R. 1999. Dissolved organic carbon cycling in a subtropical, seagrass-dominated lagoon. Mar Ecol Prog Ser 188: 51–62CrossRefGoogle Scholar
  109. Zieman JC, Thayer G, Robblee M, Zieman R 1979. Production and export of seagrasses from a tropical bay Livingston RJ, ed. Ecological processes in coastal and marine systems. Plenum Press, New York p. 21–33Google Scholar
  110. Zieman JC, Iverson RL, Ogden JC. 1984. Herbivory effects on Thalassia testudinum leaf growth and nitrogen content. Mar Ecol Prog Ser 15: 151–158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kenneth L. Heck Jr.
    • 1
    Email author
  • Tim J. B. Carruthers
    • 2
  • Carlos M. Duarte
    • 3
  • A. Randall Hughes
    • 4
  • Gary Kendrick
    • 5
  • Robert J. Orth
    • 6
  • Susan W. Williams
    • 4
  1. 1.Dauphin Island Sea Lab and University of South AlabamaDauphin IslandUSA
  2. 2.Integration and Application NetworkThe University of Maryland Center for Environmental ScienceCambridgeUSA
  3. 3.Instituto Mediterraneo de Estudios Avanzados, IMEDEACSIC-Univ. Illes BalearsEsporlesSpain
  4. 4.Bodega Marine LaboratoryUniversity of CaliforniaBodega BayUSA
  5. 5.School of Plant BiologyUniversity of Western AustraliaCrawleyAustralia
  6. 6.Virginia Institute of Marine ScienceCollege of William and MaryGloucester PointUSA

Personalised recommendations