Advertisement

Ecosystems

, Volume 11, Issue 3, pp 397–409 | Cite as

Factors Controlling the Year-Round Variability in Carbon Flux Through Bacteria in a Coastal Marine System

  • Laura Alonso-Sáez
  • Evaristo Vázquez-Domínguez
  • Clara Cardelús
  • Jarone Pinhassi
  • M. Montserrat Sala
  • Itziar Lekunberri
  • Vanessa Balagué
  • Maria Vila-Costa
  • Fernando Unrein
  • Ramon Massana
  • Rafel Simó
  • Josep M. GasolEmail author
Article

Abstract

Data from several years of monthly samplings are combined with a 1-year detailed study of carbon flux through bacteria at a NW Mediterranean coastal site to delineate the bacterial role in carbon use and to assess whether environmental factors or bacterial assemblage composition affected the in situ rates of bacterial carbon processing. Leucine (Leu) uptake rates [as an estimate of bacterial heterotrophic production (BHP)] showed high interannual variability but, on average, lower values were found in winter (around 50 pM Leu−1 h−1) as compared to summer (around 150 pM Leu−1 h−1). Leu-to-carbon conversion factors ranged from 0.9 to 3.6 kgC mol Leu−1, with generally higher values in winter. Leu uptake was only weakly correlated to temperature, and over a full-year cycle (in 2003), Leu uptake peaked concomitantly with winter chlorophyll a (Chl a) maxima, and in periods of high ectoenzyme activities in spring and summer. This suggests that both low molecular weight dissolved organic matter (DOM) released by phytoplankton, and high molecular weight DOM in periods of low Chl a, can enhance BHP. Bacterial respiration (BR, range 7–48 μg C l−1 d−1) was not correlated to BHP or temperature, but was significantly correlated to DOC concentration. Total bacterial carbon demand (BHP plus BR) was only met by dissolved organic carbon produced by phytoplankton during the winter period. We measured bacterial growth efficiencies by the short-term and the long-term methods and they ranged from 3 to 42%, increasing during the phytoplankton blooms in winter (during the Chl a peaks), and in spring. Changes in bacterioplankton assemblage structure (as depicted by denaturing gradient gel electrophoresis fingerprinting) were not coupled to changes in ecosystem functioning, at least in bacterial carbon use.

Keywords

bacterioplankton production respiration carbon marine seasonality growth efficiency coastal 

Notes

Acknowledgments

This work was supported by the Spanish projects MicroDiff (REN2001-2110/MAR), ESTRAMAR (CTM2004-12631/MAR), GENμMAR (CTM2004-02586/MAR) and MODIVUS (CTM2005-04975/MAR), EU project BASICS (EVK3-CT-2002-00078), and NoE MARBEF. Financial support was provided by a PhD fellowship from the Spanish government to L.A.S. We thank X.A.G. Morán and M. Estrada for their help with the primary production measurements, J. Felipe for technical support with flow cytometry, I. Forn for her help with field sampling, C. Pedrós-Alió for general support and encouragement, and to two anonymous reviewers for helpful comments.

References

  1. Agustí S, Satta MP, Mura MP, Benavent E. 1998. Dissolved esterase activity as a tracer of phytoplankton lysis: evidence of high phytoplankton lysis rates in the northwestern Mediterranean. Limnol Oceanogr 43:1836–49..Google Scholar
  2. Alonso-Sáez L, Gasol JM. 2007. Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in Northwestern Mediterranean coastal waters. Appl Environ Microbiol 73:3528–35.PubMedCrossRefGoogle Scholar
  3. Alonso-Sáez L, Arístegui J, Pinhassi J, Gómez-Consarnau L, González JM, Vaqué D, Agustí S, Gasol JM. 2007a. Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean. Aquat Microb Ecol 46:43–53.CrossRefGoogle Scholar
  4. Alonso-Sáez L, Balagué V, Sà E, Sánchez O, González JM, Pinhassi J, Massana R, Pernthaler J, Pedrós Alió C, Gasol JM. 2007b. Seasonality in bacterial diversity in NW Mediterranean coastal waters: assessment through clone libraries, fingerprinting and fluorescence in situ hybridization. FEMS Microb Ecol 60:98–112.CrossRefGoogle Scholar
  5. Alonso-Sáez L, Gasol JM, Arístegui J, Vilas JC, Vaqué D, Duarte CM, Agustí S. 2007c. Large scale variability in surface bacterial carbon demand and growth efficiency in the subtropical North East Atlantic Ocean. Limnol Oceanogr 52:533–46.CrossRefGoogle Scholar
  6. Apple JK, del Giorgio PA, Kemp WM. 2006. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat Microb Ecol 43:243–354.CrossRefGoogle Scholar
  7. Bjørnsen PK, Kuparinen J. 1991. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Mar Ecol Prog Ser 71:185–94.CrossRefGoogle Scholar
  8. Briand E, Pringault O, Jacquet S, Torréton JP. 2004. The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency. Limnol Oceanogr:Methods 2:406–16.Google Scholar
  9. Carlson CA, Ducklow HW. 1996. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat Microb Ecol 10:69–85.CrossRefGoogle Scholar
  10. Christian JR, Karl DM. 1995. Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three oceanographic provinces. Limnol Oceanogr 40:1042–9.Google Scholar
  11. Chróst RJ. 1992. Significance of bacterial ectoenzymes in aquatic environments. Hydrobiologia 243–244:61–70.CrossRefGoogle Scholar
  12. Cole JJ, Findlay S, Pace ML. 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10.CrossRefGoogle Scholar
  13. Cottrell MT, Kirchman DL. 2000. Natural assemblages of marine proteobacteria and members of the cytophaga-flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–7. QUITAR?PubMedCrossRefGoogle Scholar
  14. del Giorgio PA, Cole JJ. 1998. Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–41.CrossRefGoogle Scholar
  15. del Giorgio PA, Cole JJ. 2000. Bacterial energetics and growth efficiency. In: Kirchman DL, Ed. Microbial ecology of the oceans. New York: Wiley-Liss. pp 289–325.Google Scholar
  16. Duarte CM, Agustí S, Kennedy H, Vaqué D. 1999. The Mediterranean climate as a template for mediterranean marine ecosystems: the example of the northeast Spanish littoral. Progr Oceanogr 44:245–70.CrossRefGoogle Scholar
  17. Ducklow HW, Carlson CA. 1992. Oceanic bacterial production. Adv Microb Ecol 12:113–81.Google Scholar
  18. Fernandez M, Bianchi M, Van Wambeke F. 1994. Bacterial biomass, heterotrophic production and utilization of dissolved organic matter photosynthetically produced in the Almeria-Oran front. J Mar Syst 5:313–25.CrossRefGoogle Scholar
  19. Fuhrman JA, Hewson I, Schwalback MS, Steele JA, Brown MV, Naeem S. 2006. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Nat Acad Sci 103:13104–9.PubMedCrossRefGoogle Scholar
  20. Gasol JM, del Giorgio PA. 2000. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64:197–224.CrossRefGoogle Scholar
  21. Gasol JM, Duarte CM. 2000. Comparative analyses in aquatic microbial ecology: how far do they go? FEMS Microbiol Ecol 31:99–106.PubMedCrossRefGoogle Scholar
  22. Goldman JC, Caron DA, Dennett MR. 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32:1239–52.Google Scholar
  23. González N, Anadón R, Viesca L. 2003. Carbon flux through the microbial community in a temperate sea during summer: role of bacterial metabolism. Aquat Microb Ecol 33:117–26.CrossRefGoogle Scholar
  24. Grasshoff K, Ehrhardt M, Kremling K. 1983. Methods on seawater analysis, 2nd Edn. Weinheim: Verlag Chemie.Google Scholar
  25. Hoppe HG. 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308.CrossRefGoogle Scholar
  26. Jahnke RA, Craven DB. 1995. Quantifying the role of heterotrophic bacteria in the carbon cycle: a need for respiration rate measurements. Limnol Oceanogr 40:436–41.CrossRefGoogle Scholar
  27. Kirchman DL, K’nees E Hodson R. 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic ecosystems. Appl Env Microbiol 49:599–607.Google Scholar
  28. Kroer N. 1993. Bacterial growth efficiency on natural dissolved organic matter. Limnol Oceanogr 38:1282–90.CrossRefGoogle Scholar
  29. Krom MD, Brenner S, Kress N, Neori A, Gordon LI. 1993. Nutrient distributions during an annual cycle across a warm-core eddy from the E Mediterranean Sea. Deep-Sea Res I 40:805–25.CrossRefGoogle Scholar
  30. Lemée R, Rochelle-Newall E, Van Wambeke F, Pizay M-D, Rinaldi P, Gattuso J-P. 2002. Seasonal variation of bacterial production respiration and growth efficiency in the open NW Mediterranean Sea. Aquat Microb Ecol 29:227–37.CrossRefGoogle Scholar
  31. Lucea A, Duarte CM, Agustí S, Kennedy H. 2005. Nutrient dynamics and ecosystem metabolism in the Bay of Blanes (NW Mediterranean).Biogeochemistry 73:303–23.CrossRefGoogle Scholar
  32. Misic C, Povero P, Fabiano M. 2002. Ectoenzymatic ratios in relation to particulate organic matter distributions (Ross Sea, Antarctica). Microb Ecol 44:224–34.PubMedCrossRefGoogle Scholar
  33. Morán XAG, Estrada M. 2001. Short-term variability of photsynthetically parameters and particulate and dissolved primary production in the Alboran Sea (SW Mediterranean). Mar Ecol Prog Ser 212:53–67.CrossRefGoogle Scholar
  34. Morán XAG, Estrada M. 2002. Phytoplanktonic DOC and POC production in the Bransfield and Gerlache straits as derived from kinetic experiments of 14C incorporation. Deep-Sea Res II 49:769–86.CrossRefGoogle Scholar
  35. Murrell MC. 2003. Bacterioplankton dynamics in a subtropical estuary: evidence for substrate limitation. Aquat Microb Ecol 32:239–50.CrossRefGoogle Scholar
  36. Nagata T. 2000. Production and mechanisms of dissolved organic matter. In: Kirchman DL, Ed. Microbial ecology of the oceans. New York: Wiley-Liss.Google Scholar
  37. Norland S. 1993. The relationship between biomass and volume of bacteria. In: Kemp P, Sherr BF, Sherr E, Cole JJ, Eds. Handbook of methods in aquatic microbial ecology. Boca Raton: Lewis Publishing. pp 303–7.Google Scholar
  38. Obernosterer I, Herndl G. 1995. Phytoplankton extracellular release and bacterial growth dependence on the inorganic N-P ratio. Mar Ecol Prog Ser 115:247–57.CrossRefGoogle Scholar
  39. Outdot CR, Gerard R, Morin P, Gningue I. 1988. Precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with a commercial system. Limnol Oceanogr 33:146–50.CrossRefGoogle Scholar
  40. Pinhassi J, Gómez-Consarnau L, Alonso-Sáez L, Sala MM, Vidal M, Pedrós-Alió C, Gasol JM. 2006. Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea. Aquat Microb Ecol 44:241–52.CrossRefGoogle Scholar
  41. Puddu A, Zoppinni A, Fazi S, Rosati M, Amalfitano S, Magaletti E. 2003. Bacterial uptake of DOM released from P-limited bacterioplankton. FEMS Microb Ecol 46:257–68.CrossRefGoogle Scholar
  42. Reinthaler T, Herndl GJ. 2005. Seasonal dynamics of bacterial growth efficiencies in relation to phytoplankton in the Southern North Sea. Aquat Microb Ecol 39:7–16.CrossRefGoogle Scholar
  43. Riemann B, Bjornsen PK, Newell S, Fallon R. 1987. Calculation of cell production of coastal marine bacteria based on measured incorporation of [3H] thymidine. Limnol Oceanogr 32:471–6.Google Scholar
  44. Rivkin RB, Legendre L. 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291:2398–400.PubMedCrossRefGoogle Scholar
  45. Robinson C. Heterotrophic bacterial respiration. In: Kirchman, DL, Ed. Microbial ecology of the Ocean, 2nd Edn. (in press).Google Scholar
  46. Robinson C, Williams PJB. 2005. Respiration and its measurement in surface marine waters, In: del Giorgio PA, Williams PJ, Eds. Respiration in aquatic ecosystems. Oxford University Press Inc, pp 147–80.Google Scholar
  47. Sala MM, Karner M, Arin L, Marrasé C. 2001. Measurement of ectoenzyme activities as an indicator of inorganic nutrient imbalance in microbial communities. Aquat Microb Ecol 23: 301–11.CrossRefGoogle Scholar
  48. Satta MP, Agustí S, Mura MP, Vaqué D, Duarte CM. 1996. Microplankton respiration and net community metabolism in a bay on the NW Mediterranean coast. Aquat Microb Ecol 10:165–72.CrossRefGoogle Scholar
  49. Schauer M, Balagué V, Pedrós-Alió C, Massana R. 2003. Seasonal changes in the taxonomic composition of bacterioplankton in a coastal oligotrophic system. Aquat Microb Ecol 31:163–74.CrossRefGoogle Scholar
  50. Sherr EB, Sherr BF. 1996. Temporal offset in oceanic production and respiration processed implied by seasonal changes in atmospheric oxygen: the role of heterotrophic microbes. Aquat Microb Ecol 11:91–100.CrossRefGoogle Scholar
  51. Sherry ND, Boyd PW, Sugimoto K, Harrison PJ. 1999. Seasonal and spatial patterns of heterotrophic bacterial production, respiraton and biomass in the subarctic NE Pacific. Deep-Sea Res II 46: 2557–78.CrossRefGoogle Scholar
  52. Shiah F, Ducklow HW. 1994. Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol Oceanogr 39:1243–58.CrossRefGoogle Scholar
  53. Smith DC, Azam F. 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–14.Google Scholar
  54. Smith EM, Kemp WM. 1995. Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay. Mar Ecol Prog Ser 116:217–31.CrossRefGoogle Scholar
  55. Smith EM, Prairie YT. 2004. Bacterial metabolism and growth efficiency in lakes: the importance of phosphorous availability. Limnol Oceanogr 49:137–47.CrossRefGoogle Scholar
  56. Staroscik AM, Smith DC. 2004. Seasonal patterns in bacterioplankton abundance and production in Narragansett Bay, Rhode Island, USA. Aquat Microb Ecol 35:275–82.CrossRefGoogle Scholar
  57. Straskraba M, Gnauck AH. 1985. Freshwater ecosystems: modellling and similation. Amsterdam: Elsevier. pp 309.Google Scholar
  58. Teira E, Pazó MJ, Serret P, Fernández E. 2001. Dissolved organic carbon production by microbial populations in the Atlantic Ocean. Limnol Oceanogr 46:1370–7.CrossRefGoogle Scholar
  59. Thingstad TF, Hagström Å, Rassoulzadegan F. 1997. Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop? Limnol Oceanogr 42:398–404.CrossRefGoogle Scholar
  60. Urbani R, Magaletti E, Sist P, Cicero AM. 2005. Extracellular carbohydrates released by the marine diatoms Cylindrotheca closterium, Thalassiosira pseudonana and Skeletonema costatum: effect of P-depletion and growth status. Sci Total Environ 353:300–6.PubMedCrossRefGoogle Scholar
  61. White PA, Kalff J, Rasmussen JB, Gasol JM. 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb Ecol 21:99–118.CrossRefGoogle Scholar
  62. Williams PJ, del Giorgio PA. 2005. Respiration in aquatic ecosystems: history and background, In: del Giorgio PA, Williams PJ, Eds. Respiration in aquatic ecosystems. Oxford University Press Inc. pp 1–17.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Laura Alonso-Sáez
    • 1
    • 2
  • Evaristo Vázquez-Domínguez
    • 1
  • Clara Cardelús
    • 1
  • Jarone Pinhassi
    • 1
    • 3
  • M. Montserrat Sala
    • 1
  • Itziar Lekunberri
    • 1
  • Vanessa Balagué
    • 1
  • Maria Vila-Costa
    • 1
    • 4
  • Fernando Unrein
    • 1
    • 5
  • Ramon Massana
    • 1
  • Rafel Simó
    • 1
  • Josep M. Gasol
    • 1
    Email author
  1. 1.Departament de Biologia Marina i OceanografiaInstitut de Ciències del Mar-CMIMA, CSICBarcelonaSpain
  2. 2.Department of Ecology and EvolutionUppsala UniversityUppsalaSweden
  3. 3.Marine Microbiology, Department of Biology and Environmental SciencesUniversity of KalmarKalmarSweden
  4. 4.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  5. 5.IIB-INTECH, ChascomúsBuenos AiresArgentina

Personalised recommendations