, Volume 11, Issue 2, pp 250–269

Integration of Process-based Soil Respiration Models with Whole-Ecosystem CO2 Measurements

  • J. M. Zobitz
  • D. J. P. Moore
  • W. J. Sacks
  • R. K. Monson
  • D. R. Bowling
  • D. S. Schimel


We integrated soil models with an established ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to investigate the influence of soil processes on modelled values of soil CO2 fluxes (RSoil). Model parameters were determined from literature values and a data assimilation routine that used a 7-year record of the net ecosystem exchange of CO2 and environmental variables collected at a high-elevation subalpine forest (the Niwot Ridge AmeriFlux site). These soil models were subsequently evaluated in how they estimated the seasonal contribution of RSoil to total ecosystem respiration (TER) and the seasonal contribution of root respiration (RRoot) to RSoil. Additionally, these soil models were compared to data assimilation output of linear models of soil heterotrophic respiration. Explicit modelling of root dynamics led to better agreement with literature values of the contribution of RSoil to TER. Estimates of RSoil/TER when root dynamics were considered ranged from 0.3 to 0.6; without modelling root biomass dynamics these values were 0.1–0.3. Hence, we conclude that modelling of root biomass dynamics is critically important to model the RSoil/TER ratio correctly. When soil heterotrophic respiration was dependent on linear functions of temperature and moisture independent of soil carbon pool size, worse model-data fits were produced. Adding additional complexity to the soil pool marginally improved the model-data fit from the base model, but issues remained. The soil models were not successful in modelling RRoot/RSoil. This is partially attributable to estimated turnover parameters of soil carbon pools not agreeing with expected values from literature and being poorly constrained by the parameter estimation routine. We conclude that net ecosystem exchange of CO2 alone cannot constrain specific rhizospheric and microbial components of soil respiration. Reasons for this include inability of the data assimilation routine to constrain soil parameters using ecosystem CO2 flux measurements and not considering the effect of other resource limitations (for example, nitrogen) on the microbe biomass. Future data assimilation studies with these models should include ecosystem-scale measurements of RSoil in the parameter estimation routine and experimentally determine soil model parameters not constrained by the parameter estimation routine.


model-data fusion net ecosystem exchange ecosystem model parameter estimation eddy covariance heterotrophic respiration 


  1. Aber JD, Federer A (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92:463–474.CrossRefGoogle Scholar
  2. Aber JD, Reich PB, Goulden ML (1996) Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia 106:257–265.CrossRefGoogle Scholar
  3. Ågren G, Bosatta E (1987) Theoretical analysis of the long-term dynamics of carbon and nitrogen in soils. Ecology 68(5):1181–1189.CrossRefGoogle Scholar
  4. Ågren GI, Bosatta E. 1996. Theoretical ecosystem ecology: understanding element cycles. Cambridge University PressGoogle Scholar
  5. Alley R, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Friedlingstein P, Gregory J, Hegerl G, Heimann M, Hewitson B, Hoskins B, Joos F, Jouzel J, Kattsov V, Lohmann U, Manning M, Matsuno T, Molina M, Nicholls N, Overpeck J, Qin D, Raga G, Ramaswamy V, Ren J, Rusticucci M, Solomon S, Somerville R, Stocker TF, Stoot P, Stouffer RJ, Whetton P, Wood RA, Wratt D. 2007. Climate change 2007: the physical science basis, summary for policymakers, Intergovernmental Panel Climate ChangeGoogle Scholar
  6. Arthur MA, Fahey TJ (1992) Biomass and nutrients in an Englemann spruce-subalpine fir forest in north central Colorado: pools, annual production, and internal cycling. Canadian Journal of Forest Research 22:315–325.CrossRefGoogle Scholar
  7. Bhupinderpal-Singh, Nordgren A, Löfvenius MO, Högberg MN, Mellander PE, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal scots pine forest: extending observations beyond the first year. Plant Cell Environment 26:1287–1296.CrossRefGoogle Scholar
  8. Bond-Lamberty B, Wang C, Gower ST. 2004a. A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology 10:1756–1766 doi:10.1111/j.1365-2486.2004.00816.x
  9. Bond-Lamberty B, Wang C, Gower ST (2004b) Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence. Tree Physiology 24:1387–1395.PubMedGoogle Scholar
  10. Borken W, Savage K, Davidson EA, Trumbore SE. 2006. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology 12:177–193 doi:10.1111/j.1365-2486.2005.01058.x Google Scholar
  11. Bosatta E, Ågren GI (1985) Theoretical analysis of decomposition of heterogeneous substrates. Soil Biology and Biochemistry 17(5):601–610.CrossRefGoogle Scholar
  12. Bosatta E, Ågren GI (1991) Dynamics of carbon and nitrogen in the organic matter of the soil: a generic theory. The American Naturalist 138(1):227–245.CrossRefGoogle Scholar
  13. Bosatta E, Ågren GI (1999) Soil organic matter quality interpreted thermodynamically. Soil Biology and Biochemistry 31:1889–1891.CrossRefGoogle Scholar
  14. Bowling DR, Tans PP, Monson RK. 2001. Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biology 7:127–145.CrossRefGoogle Scholar
  15. Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR. 2002. 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131:113–124.CrossRefGoogle Scholar
  16. Bowling DR, Burns SP, Conway TJ, Monson RK, White JWC. 2005. Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest. Global Biogeochemical Cycles 19:GB3023 doi:10.1029/2004GB002394
  17. Braswell BH, Sacks WJ, Linder E, Schimel DS. 2005. Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Global Change Biology 11:335–355 doi:10.1111/j.1365-2486.2005.00897.x.CrossRefGoogle Scholar
  18. Brooks PD, Williams MW, Schmidt SK. 1996. Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113.CrossRefGoogle Scholar
  19. Brooks PD, McKnight D, Elder K. 2004. Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Global Change Biology 11:231–238 doi:10.1111/j.1365-2486.2004.00877.x
  20. Burns RG, Nannipieri P, Benedetti A, Hopkins DW. 2006. Defining soil quality. In: Bloem J, Hopkins DW, Benedetti A, Eds. Microbiological methods for assessing soil quality. CABI Publishing. pp 15–22Google Scholar
  21. Carbone MS, Czimczik CI, McDuffee KE, Trumbore SE. 2007. Allocation and residence time of photosynthetic products in a boreal forest using a low-level 14C pulse-chase labeling technique. Global Change Biology 13:466–477. doi: 10.1111/j.1365-2486.2006.01300.x
  22. Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050 doi:10.1007/s10021-005-0105-7
  23. Christensen S, Bjørnlund L, Vestergård M. 2007. Decomposer biomass in the rhizosphere to assess rhizodeposition. Oikos 116:65–74 doi:10.1111/j.2006.0030-1299.15178.x Google Scholar
  24. Cizneros-Dozal LM, Trumbore SE, Hanson PJ. 2007. Effect of moisture on leaf litter decomposition and its contribution to soil respiration in a temperate forest, J Geophys Res. 112:GB01013 doi:10.1029/2006JG000197
  25. Clark JS. 2007. Models for ecological data: an introduction. Princeton University PressGoogle Scholar
  26. Crawford JW, Harris JA, Ritz K, Young IM. 2005. Towards an evolutionary ecology of life in soil. TRENDS in Ecology and Evolution 20:81–87 doi:10.1016/j.tree.2004.11.014
  27. Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173 doi:10.1038/nature04514 Google Scholar
  28. Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS, Randolph JC, Zak D. 2002. Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology 113:39–51.CrossRefGoogle Scholar
  29. Davidson EA, Janssens IA, Luo Y. 2006a. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology 12:154–164 doi:10.1111/j.1365-2486.2005.01065.x
  30. Davidson EA, Richardson AD, Savage KE, Hollinger DY. 2006b. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Global Change Biology 12:230–239 doi:10.1111/j.1365-2486.2005.01062.x
  31. Dehlin H, Nilsson Charlotte MC, Wardle DA. 2006. Aboveground and belowground responses to quality and heterogeneity of organic inputs to the boreal forest. Oecologia 150(1):108–118. doi: 10.1007/s00442-006-0501-5 Google Scholar
  32. Dore S, Hymus GJ, Johnson DP, Hinkle CR, Valentini R, Drake BG. 2003. Cross validation of open-top chamber and eddy covariance measurements of ecosystem CO2 exchange in a Florida scrub-oak ecosystem. Global Change Biology 9:84–95. doi:10.1007/s004420100667 Google Scholar
  33. Ekblad A, Högberg P. 2001. Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308. doi:10.1007/s004420100667 CrossRefGoogle Scholar
  34. Fierer N, Schimel JP, Holden PA. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry 35:167–176.CrossRefGoogle Scholar
  35. Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW, Members of the NERC Soil Biodiversity Programme. 2005. Biodiversity and ecosystem function in soil. Funct Ecol 19:369–77. doi 10.1111/j.1365-2435.2005.00969.x Google Scholar
  36. Gaudinksi JB, Trumbore SE, Davidson EA, Cook AC, Markewitz D, Richter DD. 2001. The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129:420–429 doi:10.1007/s004420100746 Google Scholar
  37. Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytologist 147:13–31.CrossRefGoogle Scholar
  38. Göttlicher SG, Steinmann K, Betson NR, Högberg P. 2006. The dependence of soil microbial activity on recent photosynthate from trees. Plant Soil 287:85–94 doi:10.1007/s11104-006-0062-8 Google Scholar
  39. Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology 2:169–182.CrossRefGoogle Scholar
  40. Griffis TJ, Black TA, Gaumont-Guay D, Drewitt GB, Nesic Z , Barr AG, Morgenstern K, Kljun N. 2004. Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest. Agricultural and Forest Meteorology 125:207–223.CrossRefGoogle Scholar
  41. Hanson PJ, Edwards NT, Garten CT, Andrews JA. 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146.CrossRefGoogle Scholar
  42. Hartley IP, Armstrong AF, Murthy R, Barron-Gafford G, Ineson P, Atkin OK. 2006. The dependence of respiration on photosynthetic substrate supply and temperature: integrating leaf, soil, and ecosystem measurements. Global Change Biology 12:1954–1968 doi:10.1111/j.1365-2486.2006.01214.x
  43. Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RT, Pecot SD, Guo D (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. Journal of Ecology 94:40–57.CrossRefGoogle Scholar
  44. Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792.PubMedCrossRefGoogle Scholar
  45. Holland EA, Neff JC, Townsend AR, McKeown B. 2000. Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: implications for models. Global Biogeochemical Cycles 14(4):1137–1151.CrossRefGoogle Scholar
  46. Hubbard RM, Ryan MG, Elder K, Rhoades CC. 2005. Seasonal patterns in soil surface CO2 flux under snow cover in 50 and 300 year old subalpine forests. Biogeochemistry 73:93–107 doi:10.1007/s10533-004-1990-0 Google Scholar
  47. Hurtt GC, Armstrong RA. 1996. A pelagic ecosystem model calibrated with BATS data. Deep-Sea Research Part II-Topical Studies in Oceanography 43:653–683.CrossRefGoogle Scholar
  48. Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist 115:77–83.CrossRefGoogle Scholar
  49. Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Gruenwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology 7:269–278.CrossRefGoogle Scholar
  50. Jassal RS, Black TA. 2006. Estimating heterotrophic and autotrophic soil respiration using small-area trenched plot technique: theory and practice. Agricultural and Forest Meteorology 140:193–202.CrossRefGoogle Scholar
  51. Jenkinson DS, Rayner DH. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science 123:298–305.CrossRefGoogle Scholar
  52. Jobbagy EG, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10(2):423–436.CrossRefGoogle Scholar
  53. Johnson EA, Greene DF (1991) A method for studying dead bole dynamics in Pinus contorta var. latifola- Picea engelmannii forests. Journal of Vegetation Science 2:523–530.CrossRefGoogle Scholar
  54. Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ. 2006. Fine-root turnover patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest. New Phytologist 172:523–535 doi:10.1111/j.1469-8137.2006.01847.x Google Scholar
  55. Kaštovská E, ŠantrOpen image in new windowkova H. 2007. Fate and dynamics of recently fixed C in pasture plant-soil system under field conditions. Plant and Soil 300(1–2): 61–69. doi 10.1007/s11104-007-9388-0
  56. Kendall MG, Ord JK. 1990. Time Series. Oxford University Press, New York.Google Scholar
  57. Knohl A, Werner RA, Brand WA, Buchmann N. 2005. Short-term variations in δ13C of ecosystem respiration reveals link between assimilation and respiration in a deciduous forest. Oecologia 140:70–82. doi: 10.1007/s00442-004-1702-4 Google Scholar
  58. Knorr W, Kattge J. 2005. Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling. Global Change Biology 11:1333–1351 doi:10.1111/j.1365-2486.2005.00977.x
  59. Laiho R, Prescott CE. 1999. The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Canadian Journal of Forest Research 29: 1592–1603 doi:10.1139/X03-241 Google Scholar
  60. Laiho R, Prescott CE. 2004. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Canadian Journal of Forest Research 34:763–777 doi:10.1139/X03-241 Google Scholar
  61. Lavigne MB, Ryan MG, Anderson DE, Baldocchi DD, Crill PM, Fitzjarrald DR, Goulden ML, Gower ST, Massheder JM, McCaughey JH, Striegl MRRG. 1997. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. J Geophys Res 102(D24):28977–28985Google Scholar
  62. Law BE, Ryan MG, Anthoni PM. 1999. Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biology 5:169–182.CrossRefGoogle Scholar
  63. Lipson DA, Schmidt SK. 2004. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Applied and environmental microbiology 70(5):2867–2879 doi:10.1128/AEM.70.5.2867-2879.2004
  64. Lipson DA, Schmidt SK, Monson RK. 2000. Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biology and Biochemistry 32:441–448.CrossRefGoogle Scholar
  65. Lipson DA, Monson RK, Schmidt SK, Weintraub M. In review. The trade-off between growth rate and yield in microbial communities and its consequences for soil respirationGoogle Scholar
  66. Massman WJ, Sommerfeld RA, Mosier AR, Zeller KF, Hehn TJ, Rochelle SG. 1997. A model investigation of turbulence-driven pressure-pumping effects of the rate of diffusion of CO2, N2O, and CH4 through layered snowpacks. J Geophys Res 102(D15):18,851–18,863.CrossRefGoogle Scholar
  67. McDowell NG, Balster NJ, Marshall JD (2001) Belowground carbon allocation of Rocky Mountain Douglas-fir. Canadian Journal of Forest Research 31:1425–1436.CrossRefGoogle Scholar
  68. Metropolis N, Rosenbluth AW, Rosenbluth MN (1953) Equations of state calculations by fast computing machines. Journal of Chemical Physics 21:1087–1092.CrossRefGoogle Scholar
  69. Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Global Change Biology 8:459–478.CrossRefGoogle Scholar
  70. Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA. 2006a. The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation subalpine forest. Global Biogeochemical Cycles 20:GB3030 doi:10.1029/2005GB002684
  71. Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006b) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714 doi:10.1038/nature04555 PubMedCrossRefGoogle Scholar
  72. Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70(5):1346–1354.CrossRefGoogle Scholar
  73. Raich JW, Potter CS, Bhagawati D. 2002. Interannual variability in global soil respiration, 1980–94. Global Change Biology 8:800–812.CrossRefGoogle Scholar
  74. Rangel-Castro JI, Prosser JI, Ostle N, Scrimgeour CM, K. Killham, Meharg AA. 2005. Flux and turnover of fixed carbon in soil microbial biomass of limed and unlimed plots of an upland grassland ecosystem. Enivornmental Microbiology 7:544–552 doi:10.1111/j.1462-2920.2005.00722.x Google Scholar
  75. Raupach MR, Rayner PJ, Barrett DJ, DeFries RS, Heimann M, Ojima DS, Quegan S, Schmullius CC. 2005. Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Global Change Biology 11:378–397 doi:10.1111/j.1365-2486.2005.00917.x Google Scholar
  76. Ryan MG, Law BE (2005), Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27 doi:10.1007/s10533-004-5167-7 Google Scholar
  77. Sacks WJ, Schimel DS, Monson RK, Braswell BH. 2006. Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Global Change Biology 12:240–259 doi:10.1111/j.1365-2486.2005.01059.x
  78. Sacks WJ, Schimel DS, Monson RK. 2007. Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia 151:54–68 doi:10.1007/s00442-006-0565-2 Google Scholar
  79. Schaeffer SS, Anderson DE, Burns SP, Monson RK, Sun J, and Bowling DR. 2007. Canopy structure and atmospheric flows in relation to the δ13C of respired CO2 in a subalpine coniferous forest, Agric Forest Meteorol (in press). doi:10.1016/j.agrformet.2007.11.003
  80. Schimel DS, Brawell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton W, Townsend AR. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles 8(3):279–293.CrossRefGoogle Scholar
  81. Schimel JP, Gulledge J. 1998. Microbial community structure and global trace gases. Global Change Biology 4:745–748.CrossRefGoogle Scholar
  82. Schwartz G. 1978. Estimating the dimensions of a model. Annals of Statistics 6(2):461–464.CrossRefGoogle Scholar
  83. Scott-Denton LE, Sparks KL, Monson RK. 2003. Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biology & Biochemistry 35:525–534.CrossRefGoogle Scholar
  84. Scott-Denton LE, Rosenstiel TN, Monson RK. 2006. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Global Change Biology 12:205–216 doi:10.1111/j.1365-2486.2005.01064.x
  85. Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs, 1: Model formulation. J Climate 9:676–705.CrossRefGoogle Scholar
  86. Smith P, Andrén O, Brussaard L, Dangerfield M, Ekschmitt K, Lavelle P, Tate K. 1998. Soil biota and global change at the ecosystem level: describing soil biota in mathematical models. Global Change Biology 4:773–784.CrossRefGoogle Scholar
  87. Subke J-A, Inglima I, Cotrufo F. 2006. Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biology 12:921–943 doi:10.1111/j.1365-2486.2006.01117.x Google Scholar
  88. Tang J, Baldocchi DD, Xu L. 2005a. Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology 11:1298–1304 doi:10.1111/j.1365-2486.2005.00978.x
  89. Tang J, Misson L, Gershenson A, Cheng W, Goldstein AH. 2005b. Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agricultural and Forest Meteorology 132:212–227.CrossRefGoogle Scholar
  90. Tjoelker MG, Oleksyn J, Reich PB. 2001. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Global Change Biology 7:223–230.CrossRefGoogle Scholar
  91. Trumbore S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10(2):399–411.Google Scholar
  92. Trumbore S. 2006. Carbon respired by terrestrial ecosystems - recent progress and challenges. Global Change Biology 12:141–153 doi:10.1111/j.1365-2486.2005.01067.x
  93. Turnipseed AA, Anderson DE, Blanken PD, Baugha WM, Monson RK. 2003. Airflows and turbulent flux measurements in mountainous terrain Part 1. Canopy and local effects. Agricultural and Forest Meteorology 119:1–21.CrossRefGoogle Scholar
  94. Turnipseed AA, Anderson DE, Burns SP, Blanken PD, Monson RK. 2004. Airflows and turbulent flux measurements in mountainous terrain Part 2. Mesoscale effects. Agricultural and Forest Meteorology 125:187–205.CrossRefGoogle Scholar
  95. Wang C, Yang J. 2007. Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biology 13:123–131 doi:10.1111/j.1365-2486.2006.01291.x
  96. Williams M, Schwarz PA, Law BE, Irvine J, Kurpius MR. 2005. An improved analysis of forest carbon dynamics using data assimilation. Global Change Biology 11:89–105 doi:10.1111/j.1365-2486.2004.00891.x Google Scholar
  97. Wythers KR, Reich PB, Tjoelker MG, Bolstad PB. 2005. Foliar respiration acclimation to temperature and temperature variable q10 alter ecosystem carbon balance. Global Change Biology 11: 435–449 doi:10.1111/j.1365-2486.2005.00922.x Google Scholar
  98. Xu T, White L, Hui D, Luo Y. 2006. Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles 20:GB2007 doi:10.1029/2005GB002468
  99. Yi C, Monson RK, Zhai Z, Anderson DE, Lamb B, Allwine G, Turnipseed AA, Burns SP. 2005. Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. J Geophys Res 110:D22303 doi:10.1029/2005JD006282

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. M. Zobitz
    • 1
    • 2
  • D. J. P. Moore
    • 3
    • 4
  • W. J. Sacks
    • 5
  • R. K. Monson
    • 6
  • D. R. Bowling
    • 7
  • D. S. Schimel
    • 3
  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUtahUSA
  2. 2.Department of MathematicsAugsburg CollegeMinneapolisMinnesotaUSA
  3. 3.National Center for Atmospheric ResearchBoulderUSA
  4. 4.Department of GeographyKing’s College LondonLondonUK
  5. 5.Center for Sustainability and the Global Environment, Nelson Institute for Environmental StudiesUniversity of Wisconsin-MadisonMadisonWisconsinUSA
  6. 6.Department of Ecology and Evolutionary Biology (EEB)University of ColoradoBoulderColoradoUSA
  7. 7.Department of BiologyUniversity of UtahSalt Lake CityUtahUSA

Personalised recommendations