, Volume 10, Issue 6, pp 964–974 | Cite as

Functional Richness and Relative Resilience of Bird Communities in Regions with Different Land Use Intensities

  • J. Fischer
  • D. B. Lindenmayer
  • S. P. Blomberg
  • R. Montague-Drake
  • A. Felton
  • J. A. Stein


Empirical estimates of the function and resilience of communities under different management regimes can provide valuable information for sustainable natural resource management, but such estimates are scarce to date. We quantified the functional richness and relative resilience of bird communities inhabiting five regions in southeastern Australia that represented different management regimes. First, we show that functional richness and relative resilience were reduced at species-poor sites in all regions. Second, we show that bird communities in agricultural regions had fewer body mass groups and fewer functional groups than expected by chance. This suggests that both the function and the resilience of bird communities in agricultural regions were reduced. The likely mechanisms for the observed loss of function and relative resilience are: (1) the simplification of landscape texture resulting in selective extinction of certain body mass groups; and (2) the selective extinction of certain functional groups that are particularly sensitive to intensive land use.

Key words

cross-scale redundancy functional diversity functional groups intensive agriculture land use intensification landscape texture redundancy resilience 

Supplementary material

10021_2007_9071_MOESM1_ESM.pdf (2.8 mb)
Supplementary Material – Appendix S1 (PDF 2977910 kb)


  1. Allen CR, Gunderson L, Johnson AR. 2005. The use of discontinuities and functional groups to assess relative resilience in complex systems. Ecosystems 8:958–66.CrossRefGoogle Scholar
  2. Allen CR, Garmestani AS, Havlicek TD, Marquet PA, Peterson GD, Restrepo C, Stow CA, Weeks BE. 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecol Lett 9:630–43.PubMedCrossRefGoogle Scholar
  3. Allison G. 2004. The influence of species diversity and stress intensity on community resistance and resilience. Ecol Monogr 74:117–34.CrossRefGoogle Scholar
  4. Belyea LR, Lancaster J. 1999. Assembly rules within a contingent ecology. Oikos 86:402–16.CrossRefGoogle Scholar
  5. Bennett EM, Cumming GS, Peterson GD. 2005. A systems model approach to determining resilience surrogates for case studies. Ecosystems 8:945–57.CrossRefGoogle Scholar
  6. Calder III WA. 1984. Size, function and life history. Cambridge, MA: Harvard University Press.Google Scholar
  7. Cumming GS, Barnes G, Perz S, Schmink M, Sieving KE, Southworth J, Binford M, Holt RD, Stickler C, van Holt T. 2005. An exploratory framework for the empirical measurement of resilience. Ecosystems 8:975–87.CrossRefGoogle Scholar
  8. Diamond JM. 1975. Assembly of species communities. In: Cody ML, Diamond JM, Eds. Ecology and evolution of communities. Harvard University Press, London, pp 342–444.Google Scholar
  9. Elmqvist T, Folke C, Nystrom M, Peterson G, Bengtsson J, Walker B, Norberg J. 2003. Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–94.Google Scholar
  10. Fischer J, Lindenmayer DB. 2002. Treating the nestedness temperature calculator as a “black box” can lead to false conclusions. Oikos 99:193–9.CrossRefGoogle Scholar
  11. Fischer J, Lindenmayer DB, Manning AD. 2006. Biodiversity, ecosystem function and resilience: Ten guiding principles for off-reserve conservation. Front Ecol Environ 4:80–6.CrossRefGoogle Scholar
  12. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global consequences of land use. Science 309:570–4.PubMedCrossRefGoogle Scholar
  13. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS. 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–81.CrossRefGoogle Scholar
  14. Forys EA, Allen CR. 2002. Functional group change within and across scales following invasions and extinctions in the Everglades ecosystem. Ecosystems 5:339–47.CrossRefGoogle Scholar
  15. Gotelli NJ. 2000. Null model analysis of species co-occurrence patterns. Ecology 81:2606–21.CrossRefGoogle Scholar
  16. Gotelli NJ, Graves GR. 1996. Null models in ecology. Washington and London: Smithsonian Institution Press.Google Scholar
  17. Gotelli NJ, Entsminger GL. 2006. EcoSim: Null models software for ecology. Version 7. Jericho, Vermont: Acquired Intelligence and Kesey-Bear.Google Scholar
  18. Gunderson LH, Holling CS (Eds). 2002. Panarchy. Washington D.C.: Island Press.Google Scholar
  19. Hastie TJ. 1992. Generalized additive models. In: Chambers JM, Hastie TJ, Eds. Statistical models in S. Wadsworth and Brooks, Cole Advanced Books and Software Pacific Grove, California, pp 249–307.Google Scholar
  20. Holling CS. 1973. Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23.CrossRefGoogle Scholar
  21. Holling CS. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monogr 62:447–502.CrossRefGoogle Scholar
  22. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.CrossRefGoogle Scholar
  23. Jonsson BG. 2001. A null model for randomization tests of nestedness in species assemblages. Oecologia 127:309–13.CrossRefGoogle Scholar
  24. Kotliar NB, Wiens JA. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–60.CrossRefGoogle Scholar
  25. Lunt ID, Spooner PG. 2005. Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. J Biogeogr 32:1859–73.CrossRefGoogle Scholar
  26. Mayfield MM, Daily GC. 2005. Countryside biogeography of neotropical herbaceous and shrubby plants. Ecol Appl 15:423–39.CrossRefGoogle Scholar
  27. Mikkelson GM. 1993. How do food webs fall apart: a study of changes in trophic structure during relaxation on habitat fragments. Oikos 67:539–47.CrossRefGoogle Scholar
  28. Miklós I, Podani J. 2004. Randomization of presence-absence matrices: Comments and new algorithms. Ecology 85:86–92.CrossRefGoogle Scholar
  29. Moulton MP, Lockwood JL. 1992. Morphological dispersion of introduced Hawaiian finches: evidence for competition and a Narcissus effect. Evol Ecol 6:45–55.CrossRefGoogle Scholar
  30. Petchey OL, Gaston KJ. 2002. Extinction and the loss of functional diversity. Proc R Soc Lond B Biol Sci 269:1721–7.CrossRefGoogle Scholar
  31. Petchey OL, Gaston KJ. 2006. Functional diversity: back to basics and looking forward. Ecol Lett 9:741–58.PubMedCrossRefGoogle Scholar
  32. Peters RH. 1983. The ecological implications of body size. Cambridge: Cambridge University Press.Google Scholar
  33. Peterson G, Allen CR, Holling CS. 1998. Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18.CrossRefGoogle Scholar
  34. Peterson GD. 2002. Estimating resilience across landscapes. Conserv Ecol 6: Art. No. 17Google Scholar
  35. R Development Core Team. 2006. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  36. Restrepo C, Renjifo LM, Marples P. 1997. Frugivorous birds in fragmented neotropical montane forests: landscape pattern and body mass distribution. In: Laurance WF, Bierregaard Jr. RO, Eds. Tropical forest remnants. The University of Chicago Press Chicago, pp 171–89.Google Scholar
  37. Rodriguez-Girones MA, Santamaria L. 2006. A new algorithm to calculate the nestedness temperature of presence-absence matrices. J Biogeogr 33:924–35.CrossRefGoogle Scholar
  38. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770–4.PubMedCrossRefGoogle Scholar
  39. Sekercioglu CH. 2006. Increasing awareness of avian ecological function. Trends Ecol Evol 21:464–71.PubMedCrossRefGoogle Scholar
  40. Siemann E, Brown JH. 1999. Gaps in mammalian body size distributions reexamined. Ecology 80:2788–92.Google Scholar
  41. Walker BH. 1992. Biodiversity and ecological redundancy. Conserv Biol 6:18–23.CrossRefGoogle Scholar
  42. Walker B. 1995. Conserving biological diversity through ecosystem resilience. Conserv Biol 9:747–52.CrossRefGoogle Scholar
  43. Walker B, Kinzig A, Langridge J. 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113.CrossRefGoogle Scholar
  44. Wood SN. 2006. Generalized additive models. London: Chapman & Hall.Google Scholar
  45. Wright JP, Naeem S, Hector A, Lehman C, Reich PB, Schmid B, Tilman D. 2006. Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol Lett 9:111–20.PubMedCrossRefGoogle Scholar
  46. Zar JH. 1999. Biostatistical analysis. 4th edn. Sydney: Prentice-Hall.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Fischer
    • 1
  • D. B. Lindenmayer
    • 1
  • S. P. Blomberg
    • 1
  • R. Montague-Drake
    • 1
  • A. Felton
    • 1
  • J. A. Stein
    • 1
  1. 1.Centre for Resource and Environmental StudiesThe Australian National UniversityCanberraAustralia

Personalised recommendations