, Volume 10, Issue 6, pp 877–889 | Cite as

Human-induced Trophic Cascades and Ecological Regime Shifts in the Baltic Sea

  • Henrik ÖsterblomEmail author
  • Sture Hansson
  • Ulf Larsson
  • Olle Hjerne
  • Fredrik Wulff
  • Ragnar Elmgren
  • Carl Folke


The ecosystems of coastal and enclosed seas are under increasing anthropogenic pressure worldwide, with Chesapeake Bay, the Gulf of Mexico and the Black and Baltic Seas as well known examples. We use an ecosystem model (Ecopath with Ecosim, EwE) to show that reduced top-down control (seal predation) and increased bottom-up forcing (eutrophication) can largely explain the historical dynamics of the main fish stocks (cod, herring and sprat) in the Baltic Sea between 1900 and 1980. Based on these results and the historical fish stock development we identify two major ecological transitions. A shift from seal to cod domination was caused by a virtual elimination of marine mammals followed by a shift from an oligotrophic to a eutrophic state. A third shift from cod to clupeid domination in the late 1980s has previously been explained by overfishing of cod and climatic changes. We propose that the shift from an oligotrophic to a eutrophic state represents a true regime shift with a stabilizing mechanism for a hysteresis phenomenon. There are also mechanisms that could stabilize the shift from a cod to clupeid dominated ecosystem, but there are no indications that the ecosystem has been pushed that far yet. We argue that the shifts in the Baltic Sea are a consequence of human impacts, although variations in climate may have influenced their timing, magnitude and persistence.


eutrophication fishing marine mammal predation regime shift trophic cascade 



Drs S. Carpenter, D. Karl and two anonymous referees Provided valuable comments on the manuscript. We thank A. Bignert for assistance with Figure 1, T. J. Härkönen and K. Harding for access to seal data and comments on a previous draft, C. Harvey for providing the original EwE model and support, a wide range of marine institutes for contributing oxygen data (for example, the Finnish Institute of Marine Research; Estonian Marine Institute; Institute of Aquatic Ecology, University of Latvia; Lithuanian Maritime Safety Administration; Inst. of Meteorology and Water Management, Poland; Sea Fisheries Institute, Poland; Bundesamt für Seeschifffahrt und Hydrographie, Germany; National Environmental Research Institute; Denmark; the Swedish Meteorological and Hydrological Institute, and many others), the Swedish EPA (marine monitoring), and the Swedish Foundation for Strategic Environmental Research, Mistra for funding. SH also received funding from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, FORMAS, OH from the EU project FRAP (, and RE from the Swedish Research Council, VR.

Supplementary material

10021_2007_9069_MOESM1_ESM.pdf (98 kb)


  1. Alheit J, Möllmann C, Dutz J, Kornilovs G, Loewe P, Mohrholz V, Wasmund N. 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES J Mar Sci 62:1205–15CrossRefGoogle Scholar
  2. Blomqvist S, Gunnars A, Elmgren R. 2004. Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnol Oceanogr 49:2236–41CrossRefGoogle Scholar
  3. Casini M, Cardinale M, Hjelm J. 2006. Inter-annual variation in herring, Clupea harengus, and sprat, Sprattus sprattus, condition in the central Baltic Sea: what gives the tune? Oikos 112:638–50CrossRefGoogle Scholar
  4. Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE. 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71:163–86Google Scholar
  5. Carpenter SR. 2003. Regime shifts in lake ecosystems: pattern and variation. Oldendorf/Luhe: Ecology Institute. 199pGoogle Scholar
  6. Christensen V, Walters CJ, Pauly D. 2005. Ecopath with Ecosim: a user’s guide. Vancouver: Fisheries Centre, University of British Columbia. 154 ppGoogle Scholar
  7. Conley DJ, Humborg C, Rahm L, Savchuk OP, Wulff F. 2002. Hypoxia in the Baltic Sea and Basin-scale changes in phosphorus biogeochemistry. Environ Sci Technol 36:5315–20PubMedCrossRefGoogle Scholar
  8. De Roos AM, Persson L. 2002. Size-dependent life history traits promote catastrophic collapses of top predators. Proc Natl Acad Sci USA 99:12907–12PubMedCrossRefGoogle Scholar
  9. deYoung B, Harris R, Alheit J, Beaugrand G, Mantua N, Shannon L. 2004. Detecting regime shifts in the ocean: data considerations. Prog Oceanogr 60:143–64CrossRefGoogle Scholar
  10. Döscher R, Meier HEM. 2004. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea. Ambio 33:242–8PubMedCrossRefGoogle Scholar
  11. Elmgren R. 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapports et Procès-Verbaux des Réunions Cons int Explor Mer 183:152–69Google Scholar
  12. Elmgren R. 1989. Man’s impact on the ecosystems of the Baltic Sea: energy flows today and at the turn of the century. Ambio 18:326–32Google Scholar
  13. FAO. 2007. FAO Fisheries Department, Fishery Information, Data and Statistics Unit. Data extracted from the dataset Capture ProductionGoogle Scholar
  14. Fonselius S. 1981. Oxygen and hydrogen sulphide conditions in the Baltic Sea. Mar Pollut Bull 12:187–94CrossRefGoogle Scholar
  15. Fonselius S, Valderrama J. 2003. One hundred years of hydrographic measurements in the Baltic Sea. J Sea Res 49:229–41CrossRefGoogle Scholar
  16. Frank KT, Petrie B, Choi JS, Leggett WC. 2005. Trophic Cascades in a formerly cod-dominated ecosystem. Science 308:1621–3PubMedCrossRefGoogle Scholar
  17. Hallberg RO. 1974. Paleoredox conditions in the Eastern Gotland Basin during the recent centuries. Havsforskningsinst. Skr. 238:3–16Google Scholar
  18. Hänninen J, Vuorinen I, Hjelt P. 2000. Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol Oceanogr 45:703–10CrossRefGoogle Scholar
  19. Hansson S, Hjerne O, Harvey C, Kitchell JF, Cox SP, Essington TE. 2007. Managing Baltic sea fisheries under contrasting production and Predation regimes – ecosystem model analyses. Ambio 36:265–71PubMedCrossRefGoogle Scholar
  20. Hansson S, Rudstam LG. 1990. Eutrophication and Baltic fish communities. Ambio 19:123–5Google Scholar
  21. Harding KC, Härkönen TJ. 1999. Development in the Baltic grey seal (Halichoerus grypus) and ringed seal (Phoca hispida) populations during the 20th Century. Ambio 28:619–27Google Scholar
  22. Harvey CJ, Cox CP, Essington TE, Hansson S, Kitchell JF. 2003. An ecosystem model of food web and fisheries interactions in the Baltic Sea. ICES J Mar Sci 60:939–50CrossRefGoogle Scholar
  23. Hessle C. 1923. Undersökningar rörande torsken (Gadus callarias, L.) i mellersta Östersjön och Bottenhavet. Meddelanden från Kungliga Lantbruksstyrelsen 243:21–74Google Scholar
  24. Hinrichsen H-H, Möllmann C, Voss R, Köster FW, Kornilovs G. 2002. Biophysical modeling of larval Baltic cod (Gadus morhua) growth and survival. Can J Fish Aquat Sci 59:1858–73CrossRefGoogle Scholar
  25. Hoffmann M, Johnsson H, Gustavson A, Grimvall A. 2000. Leaching of nitrogen in Swedish agriculture—a historical perspective. Agric Ecosyst Environ 80:277–90CrossRefGoogle Scholar
  26. Holmgren M, Scheffer M. 2001. El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4:151–9CrossRefGoogle Scholar
  27. Hughes T, Bellwood DR, Folke C, Steneck RS, Wilson J. 2005. New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20:380–386PubMedCrossRefGoogle Scholar
  28. ICES. 2001. Report of the study group on multispecies predictions in the Baltic (ICES CM 2001/H:04). Copenhagen: ICESGoogle Scholar
  29. ICES. 2004a. Report of the Baltic Sea Fisheries Assessment Working Group (ICES CM 2004/ACFM: 22). Copenhagen: ICESGoogle Scholar
  30. ICES. 2004b. Report of the Herring Assessment Working Group for the Area South of 62°N (HAWG), (ICES CM 2004/ACFM: 18). Copenhagen: ICESGoogle Scholar
  31. ICES. 2006. Advice from the ICES Advisory Committee on Fishery Management
  32. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, others. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–38PubMedCrossRefGoogle Scholar
  33. Johansson L, Wallström K. 2001. Urban impact in the history of water quality in the Stockholm archipelago. Ambio 30:277–81PubMedCrossRefGoogle Scholar
  34. Jonsson A, Ebenman B. 2001. Are certain life histories particularly prone to local extinction? J Theor Biol 209:455–63PubMedCrossRefGoogle Scholar
  35. Karlson K, Rosenberg R, Bonsdorff E. 2002. Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters—a review. Oceanogr Mar Biol 40:427–89Google Scholar
  36. Köster FW, Möllmann C. 2000. Trophodynamic control by clupeid predators on recruitment success in Baltic cod? ICES J Mar Sci 57:310–23CrossRefGoogle Scholar
  37. Köster FW, Möllmann C, Hinirchsen H-H, Wieland K, Tomkiewicz J, Kraus G, Voss R, Makarchouk A, Mackenzie B, St John MA, Schnack D, Rohlf N, Linkowski T, Beyer JE. 2005. Baltic cod recruitment e the impact of climate variability on key processes. ICES J Mar Sci 62:1408–25CrossRefGoogle Scholar
  38. Larsson U, Elmgren R, Wulff F. 1985. Eutrophication and the Baltic Sea—causes and consequences. Ambio 14:9–14Google Scholar
  39. Larsson U, Hajdu S, Walve J, Elmgren R. 2001. Estimating Baltic nitrogen fixation from the summer increase in upper mixed layer total nitrogen. Limnol Oceanogr 46:811–20CrossRefGoogle Scholar
  40. Laurila SK, Laakkonen SJ. 2004. The municipal continuum: research on maritime water pollution in Helsinki in the 20th century. Boreal Environ Res 9:529–41Google Scholar
  41. MacKenzie BR, Alheit J, Conley DJ, Holm P, Kinze CC. 2002. Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea. Can J Fish Aquat Sci 59:173–90Google Scholar
  42. MacKenzie BR, Köster FW. 2004. Fish production and climate: sprat in the Baltic Sea. Ecology 85:784–94CrossRefGoogle Scholar
  43. Matthäus W. Franck H. 1992. Characteristics of major Baltic inflows—a statistical analysis. Cont Shelf Res 12:1375–400CrossRefGoogle Scholar
  44. Möllmann C, Kornilovs G, Sidrevics L. 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. J Plankton Res 22:2015–38CrossRefGoogle Scholar
  45. Möllmann C, Kornilovs G, Fetter M, Köster FW. 2004. Feeding ecology of central Baltic Sea herring and sprat. J Fish Biol 65:1563–81CrossRefGoogle Scholar
  46. Nausch G, Matthäus W, Feistel R. 2003. Hydrographic and hydrochemical conditions in the Gotland Deep area between 1992 and 2003. Oceanologia 45:557–69Google Scholar
  47. Nehring D, Matthäus W. 1991. Current trends in hydrographic and chemical parameters and eutrophication in the Baltic Sea. Internationale Revue der Gesamten Hydrobiologie 76:297–316CrossRefGoogle Scholar
  48. Niemi Å. 1979. Blue-green algal blooms and N:P ratio in the Baltic Sea. Acta Botannica Fennica 110:57–61Google Scholar
  49. Österblom H, Casini M, Olsson O, Bignert A. 2006. Fish, seabirds and trophic cascades in the Baltic Sea. Mar Ecol Prog Ser 323:233–8CrossRefGoogle Scholar
  50. Poutanen E-L, Nikkilä K. 2001. Carotenoid pigments as tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea. Ambio 30:179–83PubMedCrossRefGoogle Scholar
  51. Rönner U. 1985. Nitrogen transformations in the Baltic Proper: denitrification counteracts eutrophication. Ambio 14:134–8Google Scholar
  52. Rudstam LG, Aneer G, Hildén M. 1994. Top-down control in the pelagic Baltic ecosystem. Dana 10:105–29Google Scholar
  53. Sandberg J, Elmgren R, Wulff F. 2000. Carbon flows in Baltic Sea food webs—a re-evaluation using a mass balance approach. J Mar Syst 25:249–60CrossRefGoogle Scholar
  54. Sandén P, Håkansson B. 1996. Long-term trends in Secchi depth in the Baltic Sea. Limnol Oceanogr 41:346–51CrossRefGoogle Scholar
  55. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6PubMedCrossRefGoogle Scholar
  56. Schinke H, Matthaus W. 1998 On the causes of major Baltic inflows—an analysis of long time series. Cont Shelf Res 18:67–97CrossRefGoogle Scholar
  57. Schneider B, Kuss J. 2004. Past and present productivity of the Baltic Sea as inferred from pCO2 data. Cont Shelf Res 24:1611–22CrossRefGoogle Scholar
  58. Segerstråle SG. 1965. On the salinity conditions off the south coast of Finland since 1950, with comments on some remarkable hydrographical and biological phenomena in the Baltic area during this period. Commentationes Biologicae 28:2–28Google Scholar
  59. Shurin AT. 1960. Characteristics of the Bottom Fauna in the Eastern Baltic as Observed in 1959 (ICES CM. 109). Copenhagen: ICESGoogle Scholar
  60. Söderberg S. 1972. Sälens födoval och skadegörelse på laxfisket i Östersjön. Stockholm: Swedish Museum of Natural HistoryGoogle Scholar
  61. Sokolov A, Andrejev O, Wulff F, Rodriguez Medina M. 1997. The data assimilation system for data analysis in the Baltic Sea. Systems Ecology Contributions. No. 3, 66 pp. Stockholm University, Stockholm, SwedenGoogle Scholar
  62. Stigebrandt A. 1991. Computations of oxygen fluxes through the sea-surface and the net production of organic-matter with application to the Baltic and adjacent seas. Limnol Oceanogr 36:444–54CrossRefGoogle Scholar
  63. Svärdson G. 1955. Tumlarens inverkan på laxfångsten. Svensk Fiskeritidsskrift 11:151–4Google Scholar
  64. Thurow F. 1984. Growth production of the Baltic fish community. Rapports et Procès-Verbaux des Réunions Cons int Explor Mer 183:170–9Google Scholar
  65. Thurow F. 1997. Estimation of the total fish biomass in the Baltic Sea during the 20th century. ICES J Mar Sci 54:444–61CrossRefGoogle Scholar
  66. Thurow F. 1999a. On the Biomass of Cod in the Baltic Sea during the 20th Century (ICES CM 1999/Y3). Copenhagen: ICESGoogle Scholar
  67. Thurow F (1999b) On herring biomass in the Baltic Sea during the 20th Century (ICES CM 1999/P: 04). Copenhagen: ICESGoogle Scholar
  68. Vahtera E, Conley DJ, Gustafsson BG, Kuosa H, Pitkänen H, Savchuk OP, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff W. 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacterial blooms and complicate management in the Baltic Sea. Ambio 36:186–94.PubMedCrossRefGoogle Scholar
  69. Vallin L, Nissling A, Westin L. 1999. Potential factors influencing reproductive success of Baltic cod, Gadus morhua: a review. Ambio 28:92–9Google Scholar
  70. Vuorinen I, Hänninen J, Viitasalo M, Helminen U, Kuosa H. 1998. Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES J Mar Sci 55:767–74CrossRefGoogle Scholar
  71. Walker B, Meyers JA. 2004. Thresholds in ecological and social–ecological systems: a developing database. Ecology and Society 9:3. [online] URL:
  72. Worm B, Lotze HK, Hillebrand H, Sommer U. 2002. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417:848–51PubMedCrossRefGoogle Scholar
  73. Worm B, Myers RA. 2003. Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology 84:162–73CrossRefGoogle Scholar
  74. Wulff F, Savchuk OP, Sven H, Humborg C, Pollene F. 2005. The Baltic Sea 100 years ago. Abstracts of the 5th Baltic Sea Science Congress, Sopot, Poland, 20–24 June, 2005Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Henrik Österblom
    • 1
    • 2
    Email author
  • Sture Hansson
    • 1
  • Ulf Larsson
    • 1
  • Olle Hjerne
    • 1
  • Fredrik Wulff
    • 1
    • 2
  • Ragnar Elmgren
    • 1
  • Carl Folke
    • 1
    • 2
    • 3
  1. 1.Department of Systems EcologyStockholm UniversityStockholmSweden
  2. 2.Stockholm Resilience CentreStockholm UniversityStockholmSweden
  3. 3.The Beijer International Institute of Ecological EconomicsThe Royal Swedish Academy of SciencesStockholmSweden

Personalised recommendations