, Volume 10, Issue 3, pp 380–401 | Cite as

Projected Changes in Terrestrial Carbon Storage in Europe under Climate and Land-use Change, 1990–2100

  • Sönke ZaehleEmail author
  • Alberte Bondeau
  • Timothy R. Carter
  • Wolfgang Cramer
  • Markus Erhard
  • I. Colin Prentice
  • I. Reginster
  • Mark D. A. Rounsevell
  • Stephen Sitch
  • Benjamin Smith
  • Pascalle C. Smith
  • Martin Sykes


Changes in climate and land use, caused by socio-economic changes, greenhouse gas emissions, agricultural policies and other factors, are known to affect both natural and managed ecosystems, and will likely impact on the European terrestrial carbon balance during the coming decades. This study presents a comprehensive European Union wide (EU15 plus Norway and Switzerland, EU*) assessment of potential future changes in terrestrial carbon storage considering these effects based on four illustrative IPCC-SRES storylines (A1FI, A2, B1, B2). A process-based land vegetation model (LPJ-DGVM), adapted to include a generic representation of managed ecosystems, is forced with changing fields of land-use patterns from 1901 to 2100 to assess the effect of land-use and cover changes on the terrestrial carbon balance of Europe. The uncertainty in the future carbon balance associated with the choice of a climate change scenario is assessed by forcing LPJ-DGVM with output from four different climate models (GCMs: CGCM2, CSIRO2, HadCM3, PCM2) for the same SRES storyline. Decrease in agricultural areas and afforestation leads to simulated carbon sequestration for all land-use change scenarios with an average net uptake of 17–38 Tg C/year between 1990 and 2100, corresponding to 1.9–2.9% of the EU*s CO2 emissions over the same period. Soil carbon losses resulting from climate warming reduce or even offset carbon sequestration resulting from growth enhancement induced by climate change and increasing atmospheric CO2 concentrations in the second half of the twenty-first century. Differences in future climate change projections among GCMs are the main cause for uncertainty in the cumulative European terrestrial carbon uptake of 4.4–10.1 Pg C between 1990 and 2100.


terrestrial carbon balance climate change land-use change SRES-scenarios LPJ-DGVM 



We are grateful to Tim Mitchell (CRU) for providing the climate data and thank all participants of the ATEAM project for three-and-a-half years of constructive discussion. This work contributes to the EU-funded project ATEAM (Advanced Terrestrial Ecosystem Assessment and Modelling;; EVK2-CT−2000–00075). SZ was supported by the HSB-programme of the Federal State of Brandenburg, Germany (AZ: 24–04/323;200) and the EU-funded CarboEurope-IP (GOCE-CT-2003–505572).


  1. Alcamo J, Leemans R, Kreileman E. 1998. Global change scenarios of the 21st century. Results from the IMAGE 2.1 model. London: Elsevier.Google Scholar
  2. Amthor JS. 1995. Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biol 1:243–74.CrossRefGoogle Scholar
  3. Bondeau A, Smith PC, Zaehle Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B. 2007. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol  doi:10.1111/j.1365-2486-2006.01305.x
  4. Ciais Ph, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A, Friedlingstein P, Gruenwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustou D, Manca G, Matteucci G, Miglietta F, Ourcival J.M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.PubMedCrossRefGoogle Scholar
  5. Collatz GJ, Ribas-Carbo M, Berry JA. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–38.CrossRefGoogle Scholar
  6. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model (vol 408, pp 184, 2000). Nature 408(6813):750–1.CrossRefGoogle Scholar
  7. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7(4):357–73.CrossRefGoogle Scholar
  8. Cramer W, Bondeau A, Schaphoff S, Lucht W, Smith B, Sitch S. 2004. Tropical forest and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos Trans R Soc Lond B 359:331–43.CrossRefGoogle Scholar
  9. Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–73.PubMedCrossRefGoogle Scholar
  10. Dewar RC. 1991. A model of carbon storage in the trees, soils and wood products of managed forests. Tree Physiol 8:239–58.PubMedGoogle Scholar
  11. Dufresne JL, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Le Treut H, Monfray P. 2002. On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29 (10).Google Scholar
  12. Ewert F, Rounsevell MDA, Reginster I, Metzger MJ, Leemans R. 2005. Future scenarios of European agricultural land use. I: Estimating changes in crop productivity. Agric Ecosyst Environ 107:101–16.CrossRefGoogle Scholar
  13. Fang C, Smith P, Moncrieff J, Smith J. 2005. Similar response of labile and resistant organic matter pools to changes in temperature. Nature 433:57–58.PubMedCrossRefGoogle Scholar
  14. FAO. 2004. FAOSTAT database. FAO,, last accessed 27.08.2004
  15. Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.CrossRefGoogle Scholar
  16. Flato GM, Boer GJ. 2001. Warming asymmetry in climate change simulations. Geophys Res Lett 28:195–98.CrossRefGoogle Scholar
  17. Foley JA. 1995. An equilibrium model of the terrestrial carbon budget. Tellus 47B:310–19.Google Scholar
  18. Friedlingstein P, Dufresne JL, Cox PM, Rayner P. 2003. How positive is the feedback between climate change and the carbon cycle? Tellus B 55(2):692–700.CrossRefGoogle Scholar
  19. Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S. 2004. Terrestrial vegetation and water balance—hydraulical evaluation of a dynamic global vegetation model. J Hydrol 286(1–4):249–70.CrossRefGoogle Scholar
  20. Giardina CP, Ryan MG. 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404(6780):858–61.PubMedCrossRefGoogle Scholar
  21. Glatzel G. 1999. Historic forest use and its possible implications to recently accelerated tree growth in central Europe. In: Karjalainen T, Spieker H, Laroussinie O, Eds. Causes and consequences of accelerating tree growth in europe, EFI proceedings, No. 27. Joensuu, FI: European Forest InstituteGoogle Scholar
  22. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu SR, Nabuurs GJ, Nilsson S, Shvidenko AZ. 2002. Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12(3):891–99.CrossRefGoogle Scholar
  23. Gordon HB, O’Farrell SP. 1997. Transient climate change in the CSIRO coupled model with dynamic sea ice. Monthly Weather Rev 125:875–907.CrossRefGoogle Scholar
  24. Guo LB, Gifford RM. 2002. Soil carbon stocks and land use change: a meta analysis. Global Change Biol 8(4):345–60.CrossRefGoogle Scholar
  25. Haxeltine A, Prentice IC. 1996a. A general model for the light use efficiency of primary production. Funct Ecol 10:551–61.CrossRefGoogle Scholar
  26. Haxeltine A, Prentice IC. 1996b. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition amongst plant functional types. Global Biogeochem Cycles 10(4):693–709.CrossRefGoogle Scholar
  27. Houghton RA. 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus 51B:298–313.Google Scholar
  28. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. 2001. Climate Change 2001: the scientific basis. Contribution of working Group I to the third assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 881 pp.Google Scholar
  29. House JI, Prentice IC, Le Quéré C. 2002. Maximum impacts of future reforestation and deforestation on atmopheric CO2. Global Change Biol 8:1047–52.CrossRefGoogle Scholar
  30. House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M. 2003. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus B 55(2):345–63.CrossRefGoogle Scholar
  31. Hulme M, Wigley TML, Barrow EM, Raper SCB, Centella A, Smith S, Chipanshi AC. 2000. Using a climate scenario generator for vulnerability and adaptation assessments: MAGICC and SCENGEN Version 2.4 Workbook. Norwich: Climatic Research Unit, UEA.Google Scholar
  32. IGBP-DIS. 2000. Global soil data products CD-ROM. Technical report, International Geosphere-Biosphere Programme—Data and Information ServicesGoogle Scholar
  33. Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs G-J, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze ED, Valentini R, Dolman AJ. 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300:1538–42.PubMedCrossRefGoogle Scholar
  34. Janssens IA, Freibauer A, Schlamadinger B, Ceulemans R, Ciais P, Dolman AJ, Heimann M, Nabuurs G-J, Smith P, Valentini R, Schulze E-D. 2005. The carbon budget of terrestrial ecosystems at country-scale—a European case study. Biogeosciences 2:15–26.CrossRefGoogle Scholar
  35. Jones CD, Mcconnell C, Coleman K, Cox PM, Falloon P, Jenkinson DS, Powlson DS. 2005. Global climate change and soil carbon stocks: predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biol 11:154–66.CrossRefGoogle Scholar
  36. Kankaanpää S, Carter TR. 2004. Construction of European forest land use scenarios for the 21st century. Helsinki, FI: The Finnish Environment 707, Finnish Environment Institute.Google Scholar
  37. Karjalainen T, Spieker H, Laroussinie O, Eds. 1999. Causes and consequences of accelerating tree growth in Europe. EFI proceedings No. 27. Joensuu, FI: European Forest InstituteGoogle Scholar
  38. Keeling CD, Whorf TP. 2003. Atmospheric CO2 records from sites in the SIO air sampling network. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy,
  39. Kindermann J, Würth G, Kohlmaier G, Badeck FW. 1996. Interannual variation of carbon exchange fluxes in terrestrial ecosystems. Global Biogeochem Cycles 10(4):737–55.CrossRefGoogle Scholar
  40. Klein-Goldewijk KK. 2001. Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem Cycles 15(2):417–433.CrossRefGoogle Scholar
  41. Knorr W, Prentice IC, House J, Holland E. 2005. Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301.PubMedCrossRefGoogle Scholar
  42. Köble R, Seufert G. 2001. Novel maps for forest tree species in Europe. In: 8th European symposium on the physico-chemical behaviour of air pollutants: “ A changing atmosphere!”, Torino, ITGoogle Scholar
  43. Leemans R, Eickhout B, Strengers B, Bouwman L, Schaeffer M. 2002. The consequences of uncertainties in land use, climate and vegetation response on terrestrial carbon. Science in China, 45Google Scholar
  44. Levy PE, Cannell MGR, Friend AD. 2004. Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Global Environ Change 14:21–30.CrossRefGoogle Scholar
  45. Liski J, Ilvesniemi H, Mäkelä A, Westman CJ. 1999. CO2 emissions from soil in response to climatic warming are overestimated—the decomposition of old soil organic matter is tolerant of temperature. Ambio 28:171–74.Google Scholar
  46. Lloyd J, Farquhar GD. 1999. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. II: Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increasing nitrogen deposition at a global scale. Funct Ecol 13:439–59.CrossRefGoogle Scholar
  47. Lloyd J Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23.CrossRefGoogle Scholar
  48. Mather AS. 1990. Chapter 3: historical perspectives of forest resource use. In: Global forest resources, Portland, OR: Timber Press. pp 30–57Google Scholar
  49. McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B III, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem Cycles 15(1):183–206.CrossRefGoogle Scholar
  50. Melillo JM, Borchers J, Chaney J, Fisher H, Fox S, Haxeltine A, Janetos A, Kicklighter DW, Kittel TGF, McGuire AD, McKeown R, Neilson R, Nemani R, Ojima DS, Painter T, Pan Y, Parton WJ, Pierce L, Pitelka L, Prentice IC, Rizzo B, Rosenbloom NA, Running S, Schimel DS, Sitch S, Smith T, Woodward I. 1995. Vegetation ecosystem modeling and analysis project—comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate-change and CO2 doubling. Global Biogeochem Cycles 9(4):407–37.CrossRefGoogle Scholar
  51. Mitchell JFB, Johns TC, Senior CA. 1998. Transient response to increasing greenhouse gases using models with and without flux adjustment. Technical Report 2, Hadley Centre, UK MetOffice, London Road.Google Scholar
  52. Mitchell TD, Carter TR, Jones PD, Hulme M, New M. 2004. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record. (1901–2000) and 16 scenarios. 2001–2100). Tyndall Centre Working Paper 55, Tyndall Centre for Climate Change Reseach, University of East Anglia, Norwich, UKGoogle Scholar
  53. Monteith JL. 1995. Accommodation between transpiring vegetation and the convective boundary-layer. J Hydrol 166(3–4):251–63.CrossRefGoogle Scholar
  54. Mücher CA, Steinnocher K, Kressler F, Heunks C. 2000. Land cover characterization and change detection for environmental monitoring of pan- Europe. Int J Remote Sensing 21(6/7):1159–81.CrossRefGoogle Scholar
  55. Nabuurs GJ Mohren GMJ. 1995. Modeling analysis of potential carbon sequestration in selected forest types. Can J Forest Res 25(7):1157–1172.Google Scholar
  56. Nabuurs GJ, Schelhaas MJ, Mohren GMJ, Field CB. 2003. Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Global Change Biol 9(2):152–60.CrossRefGoogle Scholar
  57. Nakicenovic N, Alcamo J, Davis G, Vries Bde, Fenhann J, Gaffin S, Gregory K, Gruebler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen R, Victor N, Dadi Z. 2000. Emission scenarios. Special Report of Working Group III of the Intergovernmental Panal of Climate Change. Cambridge: Cambridge University Press.Google Scholar
  58. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer MP, Scarascia-Mugnozza GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. PNAS 102:18052–56.PubMedCrossRefGoogle Scholar
  59. Peylin P, Bousquet P, Le Qúeŕe C, Sitch S, Friedlingstein P, McKinley G, Gruber N, Rayner P, Ciais P. 2005. Multiple constraints on regional CO2 flux variations over land and oceans. Global Biogeochem Cycles 19:GB 1011.CrossRefGoogle Scholar
  60. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeography 19(2):117–34.CrossRefGoogle Scholar
  61. Prentice IC, Heimann M, Sitch S. 2000. The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations. Ecol Appl 10(6):1553–73.CrossRefGoogle Scholar
  62. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Qúeŕe C, Scholes RJ, Wallace DWR. 2001. The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, Eds. Climate change. 2001: the scientific basis. Contribution of working group I to the third assessment, Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
  63. Ramankutty N, Foley JA. 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem Cycles 13(4):997–1027.CrossRefGoogle Scholar
  64. Reginster I, Rounsevell MDA. 2006. Future scenarios of urban land use in Europe. Environ Plan B 33:619–36.CrossRefGoogle Scholar
  65. RIVM. 2001. The IMAGE 2.2 implementation of the SRES scenarios. A comprehensive analysis of emissions, climate change, and impacts on the 21st century. Technical Report 481508018, National Institute for Public Health and Environmental Protection.Google Scholar
  66. Rounsevell MDA, Ewert F, Reginster I, Leemans R, Carter TR. 2005. Future scenarios of European agricultural land use. II: Estimating changes in land use and regional allocation. Agric Ecosyst Environ 107:117–35.CrossRefGoogle Scholar
  67. Rounsevell MDA, Reginster I, Araújo MB, Carter TR, Dendoncker N, Ewert F, House JI, Kankaanpää S, Leemans R, Metzger MJ, Schmit C, Smith P, Tuck G. 2006. A coherent set of future land use change scenarios for Europe. Agric Ecosyst Environ 114:57–68.CrossRefGoogle Scholar
  68. Saxton KE, Rawls WL, Romberger JS, Papendick RI. 1986. Estimating generalised soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–36.CrossRefGoogle Scholar
  69. Schaphoff S, Lucht W, Gerten D, Sitch S, Cramer W, Prentice IC. 2006. Terrestrial biosphere carbon storage under alternative climate projections, Climatic Change. DOI: 10.1007/s10584-005-9002-5Google Scholar
  70. Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Garcia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B. 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–37.PubMedCrossRefGoogle Scholar
  71. Schuck A, van Brusselen J, Päivinen R, Häme T, Kennedy P, Folving S. 2002. Compilation of a calibrated European forest map derived from NOAA-AVHRR data. Technical Report EFI Internal Report 13, Joensuu, FI: European Forest Institute.Google Scholar
  72. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Venevsky S. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9:161–85.CrossRefGoogle Scholar
  73. Sitch S, Brovkin V, von Bloh W, van Vuuren D, Eickhout B, Ganoposki A. 2005. Impacts of future land cover changes on atmospheric CO2 and climate. Global Biogeochem Cycles 19: DOI:10.1029/2004GB002311Google Scholar
  74. Smith B, Prentice IC, Sykes MT. 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecol Biogeography 10(6):621–37.CrossRefGoogle Scholar
  75. Smith J, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell M, Reginster I, Ewert F. 2005. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biol 11(12):2141–52.CrossRefGoogle Scholar
  76. Smith P, Smith J, Wattenbach M, Meyer J, Lindner M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell M, Reginster I. 2006. Projected changes in mineral soil carbon of European forests, 1990–2100. Can J Soil Sci 86:159–69.Google Scholar
  77. Spieker H, Mielikäinen K, Köhl M, Skovsgaard JP. 1996. Growth trends in European Forests. Berlin: Springer.Google Scholar
  78. Thornley JHM, Cannell MGR. 2001. Soil carbon response to temperature: a hypothesis. Ann Bot 87:591–98.CrossRefGoogle Scholar
  79. UN-ECE/FAO. 2000. Temperate and boreal forest resource assessment. 2000. Geneva: United Nations Economic Commission for Europe; Food and Agriculture Organization.Google Scholar
  80. Venevsky S, Thonicke K, Sitch S, Cramer W. 2002. Simulating fire regimes in human-dominated ecosystems: Iberian peninsula case study. Global Change Biol 8:984–98.CrossRefGoogle Scholar
  81. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol Appl 7(3):737–50.Google Scholar
  82. Washington WM, Weatherly JW, Meehl GA, Semtner AJ Jr, Bettge TW, Craig AP, Strand WG Jr, Arblaster JM, Wayland VB, James R, Zhang Y. 2000. Parallel climate model (PCM) control and transient simulations. Climate Dyn 16:755–74.CrossRefGoogle Scholar
  83. Zaehle S. 2005. Process-based simulation of the European terrestrial biosphere—an evaluation of present-day and future terrestrial carbon balance estimates and their uncertainty. PhD thesis, Universität Potsdam, Potsdam, DEGoogle Scholar
  84. Zaehle S, Sitch S, Smith B, Hattermann F. 2005. Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics, Global Biogeochem Cycles. 19:1159–81. DOI:10.1029/2004GB002395Google Scholar
  85. Zaehle S, Sitch S, Prentice IC, Liski J, Cramer W, Erhard M, Hickler T, Smith B. 2006. The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecol Appl 16(4):1553–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sönke Zaehle
    • 1
    • 2
    Email author
  • Alberte Bondeau
    • 1
  • Timothy R. Carter
    • 3
  • Wolfgang Cramer
    • 1
  • Markus Erhard
    • 1
    • 4
  • I. Colin Prentice
    • 5
    • 6
  • I. Reginster
    • 7
  • Mark D. A. Rounsevell
    • 7
  • Stephen Sitch
    • 1
    • 8
  • Benjamin Smith
    • 9
  • Pascalle C. Smith
    • 1
    • 2
  • Martin Sykes
    • 9
  1. 1.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany
  2. 2.Laboratoire des Sciences du Climat et de l’EnvironnementGif-sur-YvetteFrance
  3. 3.Finnish Environment InstituteHelsinkiFinland
  4. 4.European Environment AgencyCopenhagenDenmark
  5. 5.Max-Planck-Institute for BiogeochemistryJenaGermany
  6. 6.Department of Earth SciencesUniversity of BristolBristolUK
  7. 7.Department of GeographyUniversite Catholique de LouvainLouvain-la-NeuveBelgium
  8. 8.Met Office (JCHMR), Crowmarsh-GiffordWallingfordUK
  9. 9.Geobiosphere Science Centre, Physical Geography and Ecosystems AnalysisLund UniversityLundSweden

Personalised recommendations