Ecosystems

, Volume 10, Issue 4, pp 562–578

Regression Techniques for Examining Land Use/Cover Change: A Case Study of a Mediterranean Landscape

  • James D. A. Millington
  • George L. W. Perry
  • Raúl Romero-Calcerrada
Article

Abstract

In many areas of the northern Mediterranean Basin the abundance of forest and scrubland vegetation is increasing, commensurate with decreases in agricultural land use(s). Much of the land use/cover change (LUCC) in this region is associated with the marginalization of traditional agricultural practices due to ongoing socioeconomic shifts and subsequent ecological change. Regression-based models of LUCC have two purposes: (i) to aid explanation of the processes driving change and/or (ii) spatial projection of the changes themselves. The independent variables contained in the single ‘best’ regression model (that is, that which minimizes variation in the dependent variable) cannot be inferred as providing the strongest causal relationship with the dependent variable. Here, we examine the utility of hierarchical partitioning and multinomial regression models for, respectively, explanation and prediction of LUCC in EU Special Protection Area 56, ‘Encinares del río Alberche y Cofio’ (SPA 56) near Madrid, Spain. Hierarchical partitioning estimates the contribution of regression model variables, both independently and in conjunction with other variables in a model, to the total variance explained by that model and is a tool to isolate important causal variables. By using hierarchical partitioning we find that the combined effects of factors driving land cover transitions varies with land cover classification, with a coarser classification reducing explained variance in LUCC. We use multinomial logistic regression models solely for projecting change, finding that accuracies of maps produced vary by land cover classification and are influenced by differing spatial resolutions of socioeconomic and biophysical data. When examining LUCC in human-dominated landscapes such as those of the Mediterranean Basin, the availability and analysis of spatial data at scales that match causal processes is vital to the performance of the statistical modelling techniques used here.

Keywords

land use/cover change regression modelling; hierarchical partitioning land cover classification Spain 

References

  1. Akaike H. 1978. A Bayesian analysis of the minimum AIC procedure. Ann Institute Statist Math 30:9–14CrossRefGoogle Scholar
  2. Allen HD. 2001. Mediterranean ecogeography. London: Prentice HallGoogle Scholar
  3. Aspinall R. 2004. Modelling land use change with generalized linear models—a multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana. J Environ Manage 72:91–103PubMedCrossRefGoogle Scholar
  4. Banks SC, Finlayson GR, Lawson SJ, Lindenmayer DB, Paetkau D, Ward SJ, Taylor AC. 2005. The effects of habitat fragmentation due to forestry plantation establishment on the demography and genetic variation of a marsupial carnivore, Antechinus agilis. Biol Conserv 122:581–97CrossRefGoogle Scholar
  5. Bignal EM, McCracken DI. 1996. Low-intensity farming systems in the conservation of the countryside. J Appl Ecol 33:413–24CrossRefGoogle Scholar
  6. Blondel J, Aronson J. 1999. Biology and wildlife of the mediterranean region. Oxford: Oxford University PressGoogle Scholar
  7. Bockstael NE. 1996. Modeling economics and ecology: the importance of a spatial perspective. Am J Agric Econ 78:1168–80CrossRefGoogle Scholar
  8. Brown DG, Duh JD. 2004. Spatial simulation for translating from land use to land cover. Int J Geogr Info Systems 18:35–60CrossRefGoogle Scholar
  9. Caballero R. 2001. Typology of cereal-sheep farming systems in Castile-La Mancha (south-central Spain). Agric Systems 68:215–32CrossRefGoogle Scholar
  10. Campos P, Caparros A. 2006. Social and private total Hicksian incomes of multiple use forests in Spain. Ecol Econ 57:545–57CrossRefGoogle Scholar
  11. Carmel Y, Kadmon R, Nirel R. 2001. Spatiotemporal predictive models of Mediterranean vegetation dynamics. Ecol Appl 11:268–80CrossRefGoogle Scholar
  12. Cheng J, Masser I. 2003. Urban growth pattern modeling: a case study of Wuhan city, PR China. Landsc Urban Plan 62:199–217CrossRefGoogle Scholar
  13. Chevan A, Sutherland M. 1991. Hierarchical partitioning. Am Statist 45:90–6CrossRefGoogle Scholar
  14. Chisholm M. 1962. Rural settlement and land use: an essay in location. London: Hutchison University LibraryGoogle Scholar
  15. Chomitz KM, Gray DA. 1996. Roads, land use, and deforestation: A spatial model applied to belize. World Bank Econ Rev 10:487–512Google Scholar
  16. Clarke KA. 2005. The Phantom Menace: omitted variable bias in econometric research. Conflict Manage Peace Sci 22:341–52CrossRefGoogle Scholar
  17. Cliff A, Ord JK. 1973. Spatial autocorrelation. London: Pion PressGoogle Scholar
  18. Coelho-Silva JL, Rego FC, Silvera SC, Goncalves CPC, Machado CA. 2004. Rural changes and landscape in Serra da Malcata, central east of Portugal. In: Mazzoleni S, di Pasquale G, Mulligan M, di Martino P, Rego FC, Eds. Recent dynamics of the Mediterranean vegetation and landscape. Chichester: Wiley. pp 189–200CrossRefGoogle Scholar
  19. de la Rosa D. 1990. MicroLEIS: a microcomputer based Mediterranean land evaluation information system. Madrid: IRNA, CSICGoogle Scholar
  20. Dunjo G, Pardini G, Gispert M. 2004. The role of land use-land cover on runoff generation and sediment yield at a microplot scale, in a small Mediterranean catchment. J Arid Environ 57:239–56CrossRefGoogle Scholar
  21. EEA. 2005. European Environment Agency Data ServiceGoogle Scholar
  22. Gómez-Límon J, de Lucío Fernández JV. 1999. Changes in uses and landscape preferences on the agricultural-livestock landscapes of the central Iberian Peninsula (Madrid, Spain). Landsc Urban Plan 44:164–75CrossRefGoogle Scholar
  23. Grove AT, Rackham O. 2001. The nature of Mediterranean Europe: an ecological history. London: Yale University PressGoogle Scholar
  24. Hagen A. 2002. Multi-method assessment of map similarity. In: Ruiz M, Gould M, Ramon J, Eds. 5th AGILE conference on geographic information science. Spain: Palma. pp 171–82Google Scholar
  25. Heikkinen RK, Luoto M, Kuussaari M, Poyry J. 2005. New insights into butterfly-environment relationships using partitioning methods. Proc R Soc B-Biol Sci 272:2203–10CrossRefGoogle Scholar
  26. Hoggart K, Paniagua A. 2001. The restructuring of rural Spain? J Rural Stud 17:63–80CrossRefGoogle Scholar
  27. Hosmer DW, Lemeshow S. 1989. Applied logistic regression. New York: WileyGoogle Scholar
  28. IECM. 2005. Instituto de Estadística de la Comunidad de Madrid. Madrid: Comunidad de MadridGoogle Scholar
  29. INE. 2005. Instituto Nacional de EstadicaGoogle Scholar
  30. James FC, McCulloch CE. 1990. Multivariate analysis in ecology and systematics: Panacea or Pandora’s box? Annu Rev Ecol System 21:129–66Google Scholar
  31. Joffre R, Rambal S. 1993. How tree cover influences the water-balance of Mediterranean rangelands. Ecology 74:570–82CrossRefGoogle Scholar
  32. Juntti M, Wilson GA. 2003. Deliverable 20: a report by each national team discussing the results of the farm questionnaire survey. Maastricht: ICISGoogle Scholar
  33. Kosmas C, Valsamis I. 2004. DELIVERABLE 1.3a: driving forces and pressure indicators: decision-making by local stakeholders. London: King’s College LondonGoogle Scholar
  34. Lasanta T, Garcia-Ruiz JM, Perez-Rontome C, Sancho-Marcen C. 2000. Runoff and sediment yield in a semi-arid environment: the effect of land management after farmland abandonment. Catena 38:265–78CrossRefGoogle Scholar
  35. Lennon JJ. 2000. Red-shifts and red herrings in geographical ecology. Ecography 23:101–113CrossRefGoogle Scholar
  36. Mac Nally R. 2000. Regression and model-building in conservation biology, biogeography and ecology: the distinction between and reconciliation of ‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–71CrossRefGoogle Scholar
  37. Mac Nally R. 2002. Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–401CrossRefGoogle Scholar
  38. Madrid Cd. 1995. Mapa topográfico. Territorial DgdP, Eds. Consejería de Obras Públicas, Urbanismo y TransportesGoogle Scholar
  39. MAPA. 2003. Libro Blanco de la Agricultura y el Desarrollo Rural. Madrid: Ministerio de Agricultura, Pesca y AlimentacionGoogle Scholar
  40. Mazzoleni S, di Pasquale G, Mulligan M. 2004a. Conclusion: reversing the consensus on Mediterranean desertification. In: Mazzoleni S, di Pasquale G, Mulligan M, di Martino P, Rego FC, Eds. Recent dynamics of the Mediterranean vegetation and landscape. Chichester: Wiley. pp 281–86CrossRefGoogle Scholar
  41. Mazzoleni S, di Pasquale G, Mulligan M, di Martino P, Rego FC, Eds. 2004b. Recent dynamics of the Mediterranean vegetation and landscape. Chichester: WileyGoogle Scholar
  42. McConnell WJ, Sweeney SP, Mulley B. 2004. Physical and social access to land: spatio-temporal patterns of agricultural expansion in Madagascar. Agric Ecosyst Environ 101:171–84CrossRefGoogle Scholar
  43. Metailie JP, Paegelow M. 2004. Land abandonment and the spreading of the forest in the eastern French Pyrenees in the nineteenth to twentieth centuries. In: Mazzoleni S, di Pasquale G, Mulligan M, di Martino P, Rego FC, Eds. Recent dynamics of the Mediterranean vegetation and landscape. Chichester: Wiley. pp 219–36Google Scholar
  44. Millington JDA. 2005. Wildfire risk mapping: considering environmental change in space and time. J Mediterr Ecol 6:33–42Google Scholar
  45. Mouillot F, Ratte JP, Joffre R, Moreno JM, Rambal S. 2003. Some determinants of the spatio-temporal fire cycle in a Mediterranean landscape (Corsica, France). Landsc Ecol 18:665–74CrossRefGoogle Scholar
  46. Mouillot F, Ratte JP, Joffre R, Mouillot D, Rambal S. 2005. Long-term forest dynamic after land abandonment in a fire prone Mediterranean landscape (central Corsica, France). Lands Ecol 20:101–12CrossRefGoogle Scholar
  47. Muller D, Zeller M. 2002. Land use dynamics in the central highlands of Vietnam: a spatial model combining village survey data with satellite imagery interpretation. Agric Econ 27:333–54Google Scholar
  48. Munroe DK, Southworth J, Tucker CM. 2004. Modeling spatially and temporally complex land-cover change: the case of western Honduras. Profess Geograp 56:544–59Google Scholar
  49. Olden JD, Jackson DA. 2000. Torturing data for the sake of generality: How valid are our regression models? Ecoscience 7:501–10Google Scholar
  50. Olden JD, Jackson DA. 2002. A comparison of statistical approaches for modelling fish species distributions. Freshw Biol 47:1976–95CrossRefGoogle Scholar
  51. Oliver I, Mac Nally R, York A. 2000. Identifying performance indicators of the effects of forest management on ground-active arthropod biodiversity using hierarchical partitioning and partial canonical correspondence analysis. Forest Ecol Manage 139:21–40CrossRefGoogle Scholar
  52. Overmars KP, Verburg PH. 2005. Analysis of land use drivers at the watershed and household level: Linking two paradigms at the Philippine forest fringe. Int J Geograp Inf Sci 19:125–52CrossRefGoogle Scholar
  53. Pan WKY, Bilsborrow RE. 2005. The use of a multilevel statistical model to analyze factors influencing land use: a study of the Ecuadorian Amazon. Global Planetary Change 47:232–52CrossRefGoogle Scholar
  54. Pan WKY, Walsh SJ, Bilsborrow RE, Frizzelle BG, Erlien CM, Baquero F. 2004. Farm-level models of spatial patterns of land use and land cover dynamics in the Ecuadorian Amazon. Agric Ecosyst Environ 101:117–34CrossRefGoogle Scholar
  55. Pinto-Correia T. 1993. Threatened Landscape in Alentejo, Portugal—the Montado and Other Agro-Silvo-Pastoral Systems. Landsc Urban Plan 24:43–8CrossRefGoogle Scholar
  56. Plieninger T, Modolell y Mainou J, Konold W. 2004. Land manager attitudes toward management, regeneration, and conservation of Spanish holm oak savannas (dehesas). Landsc Urban Plan 66:185–98CrossRefGoogle Scholar
  57. Pontius RG. 2000. Quantification error versus location error in comparison of categorical maps. Photogram Eng Remote Sensing 66:1011–16Google Scholar
  58. Pontius RG, Huffaker D, Denman K. 2004. Useful techniques of validation for spatially explicit land-change models. Ecol Model 179:445–61CrossRefGoogle Scholar
  59. Pontius RG, Schneider LC. 2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–48CrossRefGoogle Scholar
  60. Poyatos R, Latron J, Llorens P. 2003. Land use and land cover change after agricultural abandonment—The case of a Mediterranean Mountain Area (Catalan Pre-Pyrenees). Mountain Res Develop 23:362–68CrossRefGoogle Scholar
  61. Preiss E, Martin JL, Debussche M. 1997. Rural depopulation and recent landscape changes in a Mediterranean region: consequences to the breeding avifauna. Landsc Ecol 12:51–61CrossRefGoogle Scholar
  62. Quinn GP, Keough MJ. 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University PressGoogle Scholar
  63. R-Project. 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: http://www.r-project.org/
  64. Rackham O. 1998. Savanna in Europe. In: Kirby KJ, Watkins C, Eds. The ecological history of european forests. Wallingford: CAB International. pp 1–24Google Scholar
  65. Radford JQ, Bennett AF. 2004. Thresholds in landscape parameters: occurrence of the white-browed treecreeper Climacteris affinis in Victoria, Australia. Biol Conserv 117:375–91CrossRefGoogle Scholar
  66. Regato-Pajares P, Jimenez-Caballero S, Castejon M, Rossello RE. 2004. Recent landscape evolution in Dehesa woodlands of western Spain. In: Mazzoleni S, di Pasquale G, Mulligan M, di Martino P, Rego FC, Eds. Recent dynamics of the Mediterranean vegetation and landscape. Chichester: Wiley. pp 57–72CrossRefGoogle Scholar
  67. Romero-Calcerrada R. 2000. La valoración socioeconómica en la planificación de espacios singuales: Las Zonas de Especial Protección de Aves. PhD. Alcalá de Henares: Universidad de AlcaláGoogle Scholar
  68. Romero-Calcerrada R, Perry GLW. 2004. The role of land abandonment in landscape dynamics in the SPA ‘Encinares del rio Alberche y Corio’ central Spain, 1984–1999. Landsc Urban Plan 66:217–32CrossRefGoogle Scholar
  69. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K. 2000. Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecol Manage 132:97–109CrossRefGoogle Scholar
  70. Schneider LC, Pontius RG. 2001. Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:83–94CrossRefGoogle Scholar
  71. Serneels S, Lambin EF. 2001. Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. Agric Ecosyst Environ 85:65–81CrossRefGoogle Scholar
  72. Shoshany M. 2000. Satellite remote sensing of natural Mediterranean vegetation: a review within an ecological context. Prog Phys Geogr 24:153–78Google Scholar
  73. Simpson J. 1995. Spanish agriculture: the long Siesta, 1765–1965. Cambridge: Cambridge University PressGoogle Scholar
  74. Soares BS, Cerqueira GC, Pennachin CL. 2002. DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154:217–35CrossRefGoogle Scholar
  75. Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P. 2001. Ecological impacts of arable intensification in Europe. J Environ Manage 63:337–65PubMedCrossRefGoogle Scholar
  76. Suarez-Seoane S, Osborne PE, Baudry J. 2002. Responses of birds of different biogeographic origins and habitat requirements to agricultural land abandonment in northern Spain. Biol Conserv 105:333–44CrossRefGoogle Scholar
  77. Taverna K, Urban DL, McDonald RI. 2005. Modeling landscape vegetation pattern in response to historic land-use: a hypothesis-driven approach for the North Carolina Piedmont, USA. Landsc Ecol 20:689–702CrossRefGoogle Scholar
  78. Torta G. 2004. Consequences of rural abandonment in a northern Apennines landscape (Tuscany, Italy). In: Mazzoleni S, di Pasquale G, Mulligan M, di Martino P, Rego FC, Eds. Recent dynamics of the Mediterranean vegetation and landscape: Chichester, pp 157–166Google Scholar
  79. Trexler JC, Travis J. 1993. Nontraditional Regression Analyses. Ecology 74:1629–37CrossRefGoogle Scholar
  80. Turner MG, Wear DN, Flamm RO. 1996. Land ownership and land-cover change in the southern Appalachian highlands and the Olympic peninsula. Ecol Appl 6:1150–72CrossRefGoogle Scholar
  81. Venables WN, Ripley BD. 2002. Modern applied statistics with S. Fourth edition. New York: SpringerGoogle Scholar
  82. Verburg PH, Kok K, Pontius RG and Veldkamp A. 2006. Modelling land use and land cover change. In: Lambin EF, Geist HJ, Eds. Land-use and land-cover change. Local processes and global impacts. Dordrecht: SpringerGoogle Scholar
  83. Walsh C, Mac Nally R. 2004. hier.part, Version 0.5–3. [Online] http://www.r-project.org/
  84. Wear DN, Bolstad P. 1998. Land-use changes in Southern Appalachian landscapes: spatial analysis and forecast evaluation. Ecosystems 1:575–94CrossRefGoogle Scholar
  85. Wear DN, Turner MG, Flamm RO. 1996. Ecosystem management with multiple owners: Landscape dynamics in a southern Appalachian watershed. Ecol Appl 6:1173–88CrossRefGoogle Scholar
  86. Williams NSG, McDonnell MJ, Seager EJ. 2005. Factors influencing the loss of an endangered ecosystem in an urbanising landscape: a case study of native grasslands from Melbourne, Australia. Landsc Urban Plan 71:35–49CrossRefGoogle Scholar
  87. Young J, Watt A, Nowicki P, Alard D, Clitherow J, Henle K, Johnson R, Laczko E, McCracken D, Matouch S, Niemela J, Richards C. 2005. Towards sustainable land use: identifying and managing the conflicts between human activities and biodiversity conservation in Europe. Biodivers Conserv 14:1641–61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • James D. A. Millington
    • 1
  • George L. W. Perry
    • 2
  • Raúl Romero-Calcerrada
    • 3
  1. 1.Environmental Monitoring and Modelling Research Group, Department of GeographyKing’s College LondonLondonUK
  2. 2.School of Geography and Environmental ScienceUniversity of AucklandAucklandNew Zealand
  3. 3.School of Engineering Science and TechnologyRey Juan Carlos UniversityMóstolesSpain

Personalised recommendations