, Volume 9, Issue 7, pp 1106–1117 | Cite as

Vegetation–Climate Interactions among Native and Invasive Species in Hawaiian Rainforest

  • Gregory P. AsnerEmail author
  • Roberta E. Martin
  • Kimberly M. Carlson
  • Uwe Rascher
  • Peter M. Vitousek


We compiled a time series of Earth Observing-1 Hyperion satellite observations with field measurements to compare the structural, biochemical, and physiological characteristics of an invasive nitrogen-fixing tree Myrica faya and native Metrosideros polymorpha in montane rainforests in Hawai’i. Satellite-based canopy water measurements closely tracked variations in leaf area index, and the remotely sensed photochemical and carotenoid reflectance indices (PRI, CRI) indicated variations in upper-canopy leaf chlorophyll and carotenoid content during a climatological transition. The PRI and CRI were related to differences in light-use efficiency of each species, as indicated by field measurements of leaf electron transport rate. The suite of hyperspectral metrics indicated maximum differences in the structure, biochemistry, and physiology of Myrica and Metrosideros when canopy vapor pressure deficit was high during hotter and drier periods. These satellite data, combined with the Carnegue-Ames-Stanford Approach (CASA) carbon cycle model, suggested that Myrica growth rates were 16–44% higher than Metrosideros, with relative differences between species closely linked to climate conditions. The satellite hyperspectral data identified the basic biological mechanisms favoring the spread of an introduced tree, and provided a more detailed understanding of how vegetation–climate interactions affect the time course of plant growth with respect to the invasion process.


earth observing-1 Hawai’i hyperion hyperspectral remote sensing Metrosideros polymorpha Myrica faya Morella faya imaging spectroscopy invasive species rainforest 



We thank T. Brakke, L. Ong and S. Ungar of the EO-1. This work was supported by grants from the National Science Foundation (DEB-0136957), the Carnegie Institution, and the National Aeronautics and Space Administration (NAG5-8709).


  1. Asner GP. 1998. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens Environ 64:234–53CrossRefGoogle Scholar
  2. Asner GP, Heidebrecht KB. 2003. Imaging spectroscopy for desertification studies: comparing AVIRIS and EO-1 Hyperion in Argentina drylands. IEEE Trans Geosci Remote Sens 41:1283–96CrossRefGoogle Scholar
  3. Asner GP, Vitousek PM. 2005. Remote analysis of biological invasion and biogeochemical change. Proc Nat’ Acad Sci U S A 102:4383–6CrossRefGoogle Scholar
  4. Asner GP, Nepstad D, Cardinot G, Ray D. 2004. Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proc Nat’ Acad Sci U S A 101:6039–44CrossRefGoogle Scholar
  5. Carlson TN, Ripley DA. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sen Environ 62:241–52CrossRefGoogle Scholar
  6. Field CB, Randerson JT, Malmström CM. 1995. Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51:74–88CrossRefGoogle Scholar
  7. Gamon JA, Surfus JS. 1999. Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–17CrossRefGoogle Scholar
  8. Gamon JA, Peñuelas J, Field CB. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44CrossRefGoogle Scholar
  9. Gamon JA, Serrano L, Surfus JS. 1997. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501CrossRefGoogle Scholar
  10. Genty B, Briantais JM, Baker NR. 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92Google Scholar
  11. Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN. 2002. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol 75:272–81PubMedCrossRefGoogle Scholar
  12. Green RO. 2003. Understanding the three phases of water with imaging spectroscopy in the solar reflected energy spectrum. Santa Barbara: University of CaliforniaGoogle Scholar
  13. Guo JM, Trotter CM. 2004. Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. Funct Plant Biol 31:255–65CrossRefGoogle Scholar
  14. Lichtenthaler HK. 1987. Chlorophyll and carotenoids:pigments of photosynthetic membranes. Methods Enzymol 148:350–87CrossRefGoogle Scholar
  15. Lichtenthaler HK, Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In: Current protocols in food analytical chemistry. New York: Wiley. p 431–8Google Scholar
  16. Myneni RB, Ramakrishna RN, Running SW. 1997. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans Geosci Remote Sens 35:1380–93CrossRefGoogle Scholar
  17. Penuelas J, Filella I, Gamon JA. 1995. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131:291–6CrossRefGoogle Scholar
  18. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA. 1993. Terrestrial ecosystem production—a process model based on global satellite and surface data. Global Biogeochem Cycles 7:811–41CrossRefGoogle Scholar
  19. Rascher U, Leibig M, Lüttge M. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–405CrossRefGoogle Scholar
  20. Roberts DA, Ustin SL, Ogunjemiyo S, Greenberg J, Dobrowski SZ, Chen JQ, Hinckley TM. 2004. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems 7:545–62.CrossRefGoogle Scholar
  21. Rosati A, Esparza G, DeJong TM, Pearcy RW. 1999. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Tree Physiol 19:173–80PubMedGoogle Scholar
  22. Schreiber U, Bilger W. 1993. Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog Bot 54:151–7Google Scholar
  23. Sellers PJ. 1985. Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–72Google Scholar
  24. Shuttleworth WJ. 1993. Evaporation. In: Maidment DR, editor. Handbook of hydrology. New York: McGraw-HillGoogle Scholar
  25. Sims DA, Gamon JA. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–54CrossRefGoogle Scholar
  26. Stylinski CD, Gamon JA, Oechel WC. 2002. Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131:366–74CrossRefGoogle Scholar
  27. Ungar SG, Pearlman JS, Mendenhall JA, Reuter D. 2003. Overview of the Earth Observing-1 (EO-1) mission. IEEE Trans Geosci Remote Sens 41:1149–60CrossRefGoogle Scholar
  28. Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO. 2004. Using imaging spectroscopy to study ecosystem processes and properties. BioSci 54:523–34CrossRefGoogle Scholar
  29. Vitousek PM, Walker LR. 1989. Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–65.CrossRefGoogle Scholar
  30. Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA. 1987. Biological invasion by Myrica faya alters ecosystem development in Hawai’i. Science 238:802–4CrossRefPubMedGoogle Scholar
  31. von Caemmerer S. 2000. Biochemical models of leaf photosynthesis. Collingwood (Aust): CSIROGoogle Scholar
  32. Walker LR, Vitousek P. 1991. An invader alters germination and growth of a native dominant tree in Hawai’i. Ecology 72:1449–54CrossRefGoogle Scholar
  33. Welles JM, Norman JM. 1991. Instrument for indirect measurement of canopy architecture. Agron J 83:818–25CrossRefGoogle Scholar
  34. Whitehead D, Boelman NT, Turnbull MH, Griffin KL, Tissue DT, Barbour MM, Hunt JE, et al. 2005. Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand. Oecologia 144:233–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Gregory P. Asner
    • 1
    Email author
  • Roberta E. Martin
    • 1
  • Kimberly M. Carlson
    • 1
  • Uwe Rascher
    • 2
  • Peter M. Vitousek
    • 3
  1. 1.Department of Global EcologyCarnegie Institution of WashingtonStanfordUSA
  2. 2.Institute of Chemistry and Dynamics of the Geosphere ICG-III: Phytosphere, Research Center JülichStetternicher ForstGermany
  3. 3.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations