Advertisement

Ecosystems

, 9:598 | Cite as

Rain Forest Islands in the Chilean Semiarid Region: Fog-dependency, Ecosystem Persistence and Tree Regeneration

  • Ek del-Val
  • Juan J. Armesto
  • Olga Barbosa
  • Duncan A. Christie
  • Alvaro G. Gutiérrez
  • Clive G. Jones
  • Pablo A. Marquet
  • Kathleen C. Weathers
Article

Abstract

Tree presence in semiarid ecosystems is generally constrained by insufficient annual rainfall. However, in semiarid Chile, rainforest patches dominated by Aextoxicon punctatum are unexpectedly found on coastal mountaintops (450–600 m) at 30°S, surrounded by a xerophytic vegetation matrix that receives only 147 mm of annual precipitation. It has been proposed that these forests persist as a result of fog-water inputs. If so, then because fog-water deposition is spatially heterogeneous and shows strong edge effects, the potential environmental gradient created by the direction of fog input should determine forest structure and tree regeneration patterns. To investigate this hypothesis, we measured fog inputs, forest structural attributes (age and size distribution, basal area, and coarse woody debris), and tree regeneration in three different habitats: the windward edges (WE), leeward edges (LE), and the interior (center) of rainforest patches varying in area from 0.2 to 22 ha. Mean fog-water input was estimated from passive collectors over 1 year in WE and LE of patches. Tree regeneration was greater in the WE and forest interior (FI) and decreased toward the LE of patches, following a marked pattern of decline in fog inputs. Older trees and coarse woody debris were concentrated in the FI and LE of patches. Tree regeneration and patch structure appear to be largely controlled by fog-input direction and edge effects. We propose that forest patches may be slowly growing toward the incoming fog edge, while dying at the opposite edge.

Keywords

Aextoxicon punctatum edge effects forest structure tree regeneration mortality water limitation Chile 

Notes

Acknowledgements

This work was supported by Fondo de investigación Avanzada en Areas Prioritarias FONDAP – FONDECYT 1501-0001 Centro de Estudios Avanzados en Ecologia Biodiversidad (CASEB); the Biocores Project, funded by the European Community (EC) under the INCO IV program (contract ICA 4-CT-2001–10095); Centro Milenio para Estudios Avanzados en Ecología e Investigación en Biodiversidad (CMEB) (PO2-051-F, ICM); the National Science Foundation (International Americas Program, INT-0313927); and the Institute of Ecosystem Studies. The Corporación Nacional Forestal (CONAF, IV Región, Chile) kindly gave permission to work at Fray Jorge National Park. We thank J. Monardes, A. Abarzúa, M. Nuñez, D. Fernández, J. P. François, J. Valdez, J. M. Valenzuela, T. Catalán, N. Davis, and D. Gho for their help with field data collection, and N. Carrasco and A. Rivera for laboratory assistance. Pablo Necochea kindly drew the Fray Jorge map. Other than the first author, order of authorship is alphabetical. This is a contribution to the program of the Institute of Ecosystem Studies.

References

  1. Armesto JJ, Fuentes ER. 1988. Tree species regeneration in a mid-elevation temperate forest in Isla Chiloé, Chile. Vegetatio 74: 151–159CrossRefGoogle Scholar
  2. Armesto JJ, Aravena JC, Villagrán C, Pérez C, Parker GG. 1996. Bosques templados de la cordillera de la costa. In: Armesto JJ, Villagrán C, Kalin-Arroyo MT, Eds. Ecología de los bosques nativos de Chile. Santiago: Editorial Universitaria. p. 199–233Google Scholar
  3. Azevedo J, Morgan DL. 1974. Fog precipitation in coastal Californian forests. Ecology 55:1135–41CrossRefGoogle Scholar
  4. Beier C, Gunderson P. 1989. Atmospheric deposition to the edge of a spruce forest in Denmark. Environ Pollut 6:257–71CrossRefGoogle Scholar
  5. Burgess N, Dawson TE. 2004. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant Cell Environ 27:1023–34CrossRefGoogle Scholar
  6. Carmona M, Armesto JJ, Aravena JC, Pérez C. 2002. Coarse woody debris biomass in successional and primary temperate forests in Chiloé Island, Chile. Fort Ecol and Manage 164:265–75CrossRefGoogle Scholar
  7. Cereceda P, Schemenauer RS. 1991. The occurrence of fog in Chile. J Appl Meteorol 30:1097–105CrossRefGoogle Scholar
  8. Cereceda P, Osses P, Larrain H, Farías H, Logos M, Pinto R, Schemenaver RS. 2002. Advective, orographic and radiation fog in the Tarapaco region, Chile. Atmos Res 64: 261–271CrossRefGoogle Scholar
  9. Cottam G, Curtis JT. 1956. The use of distance measures in phytosociological sampling. Ecology 37:451–60CrossRefGoogle Scholar
  10. Dawson TE. 1998. Fog in California redwood forest: ecosystem inputs and use by plants. Oecologia 117:476–85CrossRefGoogle Scholar
  11. Di Castri F, Hajek E. 1976. Bioclimatología de Chile. Santiago: Universidad Católica de ChileGoogle Scholar
  12. Duncan R. 1989. An evaluation of errors in tree age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides). N Z Nat Sci 16:31–7Google Scholar
  13. Erisman JW, Draaijers G, Duyzer J, Hofschereuder P, van Leeuwen N, Romer F, Ruijgrok W, et al. 1997. Particle deposition to forests: summary of results and application. Atmo Environ 31:321–32CrossRefGoogle Scholar
  14. Gajardo R, Grez I. 1990. Diagnóstico de algunos aspectos de la regeneración en el bosque de Fray Jorge (IV Región). La Serena: Ministerio de Agricultura — CONAF IV RegiónGoogle Scholar
  15. Gajardo R, Toral M, Cubillos V. 1984. Estudio de regeneración en el bosque de Fray Jorge. La Serena: CONAF IV Región — Universidad de Chile, Facultad de Ciencias Agrarias, Veterinarias y ForestalesGoogle Scholar
  16. Grace J. 1997. Plant–water relations. In: Crawley MJ, ED. Plant ecology. Oxford, (UK): Blackwell Science. p 28–50.Google Scholar
  17. Heinemann K, Kitzberger T, Veblen TT. 2000. Influences of gap microheterogeneity on the regeneration of Nothofagus pumilio in a xeric old-growth forest of northwestern Patagonia, Argentina. Can J For Res 30:25–31CrossRefGoogle Scholar
  18. Heinz V. 1998. Holocene changes and atmospheric paleocirculation in the northwestern part of the “Arid Diagonal” of South America. Bamberger Geographi Schr 15:355–369.Google Scholar
  19. Holdridge LR. 1947. Determination of world plant formations from simple climatic data. Science 105:367–8PubMedGoogle Scholar
  20. Hutley LB, Doley D, Yates DJ, Boonsaner A. 1997. Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog water. Austr J Bot 45:311–29CrossRefGoogle Scholar
  21. Jaksic F. 2001. Ecological effects of El Niño in terrestrial ecosystems of western South America. Ecography 24:241–50CrossRefGoogle Scholar
  22. Kitzberger T, Steinaker DF, Veblen TT. 2000. Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology 81:1914–24CrossRefGoogle Scholar
  23. Kummerow J. 1966. Aporte al conocimiento de las condiciones climáticas del bosque de Fray Jorge. Boletín técnico. Santiago: Universidad de Chile, Facultad de Agronomía p 21–4Google Scholar
  24. Looser G. 1935. Argumentos botánicos a favor de un cambio de clima en Chile central en tiempos geológicos recientes. Rev Univ 20:843–57Google Scholar
  25. López-Cortés F, López D. 2004. Antecedentes bioclimáticos del Parque Nacional Bosque Fray Jorge. In: Squeo FA, Gutiérrez JR, Hernández IR, eds. Historia natural del Parque Nacional Bosque Fray Jorge. La Serena (Chile): Universidad de La Serena. p 45–60Google Scholar
  26. Loveless AR. 1961. A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann Bot 24:168–76Google Scholar
  27. Maldonado A, Villagrán C. 2002. Paleoenvironmental changes in the semiarid coast of Chile (∼32°S) during the last 6200 cal years inferred from a swamp–forest pollen record. Quat Res 58:130–8CrossRefGoogle Scholar
  28. Maticorena C, Quezada M. 1985. Catálogo de la flora vascular de Chile. Gayana Bot 42:1–157.Google Scholar
  29. McCulloch RD, Bentley MJ, Purves RS, Hulton NRJ, Sugden DE, Claperton CM. 2000. Climatic inferences from glacial and palaecological evidence at the last glacial termination, southern South America. J Quat Sci 15:409–17CrossRefGoogle Scholar
  30. Meserve PL, Kelt DW, Milstead WB, Gutiérrez JR. 2003. Thirteen years of shifting top-down and bottom-up control. Biol. Science 53:633–46Google Scholar
  31. Montecinos A, Aceituno P. 2003. Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J Clim 16:281–96CrossRefGoogle Scholar
  32. Muñoz C, Pisano E. 1947. Estudio de la vegetación y flora de los parques nacionales de Fray Jorge y Talinay. Agric Técn 7:71–190Google Scholar
  33. Novoa-Jerez J, Viada-Ovalle JM, López D, Squeo FA. 2004. Localización espacial del bosque Fray Jorge en los Altos del Talinay, IV Región de Coquimbo. In: Squeo FA, Gutiérrez JR, Hernández IR, eds. Historia natural del Parque Nacional Bosque Fray Jorge. La Serena (Chile): Ediciones Universidad de La Serena. p 161–71Google Scholar
  34. Pérez C. 1996. Los procesos de descomposición de la materia orgánica en bosques templados costeros: interacción entre suelo, clima y vegetación. In: Armesto JJ, Villagrán C, Kalin-Arroyo MT, eds. Ecología de los bosques nativos de Chile. Santiago: Editorial Universitaria. p 301–16Google Scholar
  35. Philippi F. 1884. A visit to the northernmost forest of Chile. J Bot 22:202–11Google Scholar
  36. Rundel PW, Mahu M. 1976. Community structure and diversity of a coastal fog zone in northern Chile. Flora 165:493–505Google Scholar
  37. Schemenauer RS, Cereceda P. 1994. Fog collection’s role in water planning for developing countries. Nat Resour Forum 18:91–100.CrossRefGoogle Scholar
  38. Schmithusen J. 1956. Die räumliche Ordnung der chilenischen Vegetation. Bonn Geogr Abh 17:1–86.Google Scholar
  39. Skottsberg C. 1948. Apuntes sobre la flora y vegetación de Fray Jorge, Chile. Meddel Góteborgs Bot Trádgard 18:91–184.Google Scholar
  40. Smith-Ramirez C, Armesto JJ, Rodriguez J, Gutiérrez AG, Christie D, Nuńez M. 2005 Aextoxicon punctatum el tique u olivillo. In: Smith-Ramirez C, Armesto JJ, Valdovinos C. Eds. Historia, biodiversidad y ecología de los bosques costeros de Chile. Santiago (Chile): Editorial Universitaria. p 278–283Google Scholar
  41. Squeo FA, Arancio G, Novoa-Jerez J. 2004. Heterogeneidad y diversidad florística del Bosque de Fray Jorge. In: Squeo FA, Gutiérrez JR, Hernández IR, eds. Historia natural del Parque Nacional Bosque Fray Jorge. La Serena (Chile): Ediciones Universidad de La Serena. p 173–85.Google Scholar
  42. Stokes M, Smiley T. 1968. An introduction to tree ring dating. Chicago: Univerisity of Chicago PressGoogle Scholar
  43. Veblen TT, Donoso C, Schlegel FM, Escobar R. 1981. Forest dynamics in south-central Chile. J Biogeogr 8:211–47Google Scholar
  44. Veblen TT, Markgraf V. 1988. Steppe expansion in Patagonia? Quat Res 30:331–8Google Scholar
  45. Villagrán C, Armesto JJ. 1980. Relaciones florísticas entre las comunidades relictuales del Norte Chico y la Zona Central con el bosque del Sur de Chile. Bol Mus Nac Hist Nat 37:85–99.Google Scholar
  46. Villagrán C, Varela J. 1990. Palynological evidence for increased aridity on the central Chilean coast during the Holocene. Quat Res 34:198–207.Google Scholar
  47. Villagrán C, Armesto JJ, Hinojosa F, Cuvertino J, Pérez C, Medina C. 2004. El enigmático origen del bosque relicto de Fray Jorge. In: Squeo FA, Gutiérrez JR, Hernández IR, eds. Historia natural del Parque Nacional Bosque Fray Jorge. La Serena, (Chile): Ediciones Universidad de La Serena. p 173–85Google Scholar
  48. Weathers KC, Lovett GM, Likens GE. 1992. The influence of a forest edge on cloud deposition. In: Schwartz SE, Slinn WGN, eds. Precipitation scavenging and atmosphere–surface exchange. Washington, (DC): Hemisphere. p 1415–23Google Scholar
  49. Weathers KC, Lovett GM, Likens GE. 1995. Cloud deposition to a spruce forest edge. Atmos Environ 29:665–72CrossRefGoogle Scholar
  50. Weathers KC, Lovett GM, Likens GE, Lathrop R. 2000. The effect of landscape features on deposition to Hunter Mountain, Catskill Mountains, New York. Ecol Appl 10:528–40Google Scholar
  51. Weathers KC, Cadenasso M, Pickett STA. 2001. Forest edges as nutrient and pollutant concentrators: potential synergisms between fragmentation, forest canopies, and the atmosphere. Conser Biol 15:1506–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ek del-Val
    • 1
    • 5
  • Juan J. Armesto
    • 1
    • 2
    • 3
  • Olga Barbosa
    • 1
  • Duncan A. Christie
    • 1
    • 2
    • 4
  • Alvaro G. Gutiérrez
    • 2
  • Clive G. Jones
    • 3
  • Pablo A. Marquet
    • 1
  • Kathleen C. Weathers
    • 3
  1. 1.Center for Advanced Studies in Ecology and Biodiversity, Departamento de EcologíaFacultad Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro milenio para Estudios Avanzados en Ecologia e Investigación en Biodiversidad (CMEB), Departamento de Ciencias EcológicasFacultad de Ciencias Universidad de ChileSantiagoChile
  3. 3.Institute of Ecosystem StudiesMillbrookUSA
  4. 4.FORECOS, Facultad de Ciencias ForestalesUniversidad Austral de ChileValdiviaChile
  5. 5.Centro de Estudios Ecosistemas, inversidad Nacional tutónoma de México, Ap. 27-3Santa Maria de guido MoreliaMichoacánMéxico

Personalised recommendations