Skip to main content
Log in

Global Distributions of Arbuscular Mycorrhizal Fungi

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

We examined potential large-scale controls over the distribution of arbuscular mycorrhizal (AM) fungi and their host plants. Specifically, we tested the hypothesis that AM fungi should be more prevalent in biomes where nutrients are primarily present in mineral, and not organic, forms. Values of percentage root length colonized (%RLC) by AM fungi, AM abundance, and host plant availability were compiled or calculated from published studies to determine biome-level means. Altogether, 151 geographic locations and nine biomes were represented. Percent RLC differed marginally significantly among biomes and was greatest in savannas. AM abundance (defined as total standing root length colonized by AM fungi) varied 63-fold, with lowest values in boreal forests and highest values in temperate grasslands. Biomes did not differ significantly in the percentage of plant species that host AM fungi, averaging 75%. Contrary to the hypothesis, %RLC, AM abundance, and host plant availability were not related to the size, influx, or turnover rate of soil organic matter pools. Instead, AM abundance was positively correlated with standing stocks of fine roots. The global pool of AM biomass within roots might approach 1.4 Pg dry weight. We note that regions harboring the largest stocks of AM fungi are also particularly vulnerable to anthropogenic nitrogen deposition, which could potentially alter global distributions of AM fungi in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aerts R, Chapin FS. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    CAS  Google Scholar 

  • Ahmad NB. 1983, A preliminary survey on nodulation and VA mycorrhiza in legume roots. Malays Forest 46:171–4

    Google Scholar 

  • Allen MF. 1983. Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia 75:773–6

    Google Scholar 

  • Allen MF. 2001. Modeling arbuscular mycorrhizal infection: is % infection an appropriate variable? Mycorrhiza 10:255–8

    Article  Google Scholar 

  • Allen EB, Allen MF. 1980. Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming. J Appl Ecol 17:139–47

    Google Scholar 

  • Allen EB, Chambers JC, Connor KF, Allen MF, Brown RW. 1987. Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arctic Alp Res 19:11–20

    Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E. 1995a. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    Article  CAS  Google Scholar 

  • Allen EB, Rincon E, Allen MF, Perez-Jimenez A, Huante P. 1998. Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30:261–74

    Article  Google Scholar 

  • Allen MF, Allen EB, Stahl PD. 1984. Differential niche response of Bouteloua gracilis and Pascopyrum smithii to VA mycorrhizae. Bull Torrey Bot Club 111:361–5

    Google Scholar 

  • Allen MF, Morris SJ, Edwards F, Allen EB. 1995b. Microbe–plant interactions in Mediterranean-type habitats: shifts in fungal symbiotic and saprophytic functioning in response to global change. In: Moreno JM, Oechel WC, Eds. Global change and Mediterranean-type ecosystems. Berlin Heidelberg New York: Springer, p 297–305

    Google Scholar 

  • Allen MF, EgertonWarburton LM, Allen EB, Karen O. 1999. Mycorrhizae in Adenostoma fasciculatum Hook. & Arn.: a combination of unusual ecto- and endo-forms. Mycorrhiza 8:225–8

    Article  Google Scholar 

  • Allsopp N, Stock WD. 1993. Mycorrhizal status of plants growing in the Cape Floristic Region, South-Africa. Bothalia 23:91–104

    Google Scholar 

  • Amundson R. 2001. The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–62

    Article  CAS  Google Scholar 

  • Anderson RC, Liberta AE. 1992. Influence of supplemental inorganic nutrients on growth, survivorship, and mycorrhizal relationships of Schizachyrium scoparium (Poaceae) grown in fumigated and unfumigated soil. Am J Bot 79:406–14

    CAS  Google Scholar 

  • Andrade ACS, Queiroz MH, Hermes RAL, Oliveira VL. 2000. Mycorrhizal status of some plants of the Araucaria forest and the Atlantic rainforest in Santa Catarina, Brazil. Mycorrhiza 10:131–6

    Article  Google Scholar 

  • Barnola LG, Montilla MG. 1997. Vertical distribution of mycorrhizal colonization, root hairs, and belowground biomass in three contrasting sites from the tropical high mountains, Merida, Venezuela. Arctic Alp Res 29:206–12

    Google Scholar 

  • Beena KR, Raviraja NS, Sridhar KR. 2000. Seasonal variations of arbuscular mycorrhizal fungal association with Ipomoea pes-caprae of coastal sand dunes, Southern India. J Environ Biol 21:341–7

    Google Scholar 

  • Belward AS, Estes JE, Kline KD. 1999. The IGBP-DIS global 1-km land-cover data set DISCover: a project overview. Photogram Eng Remote Sens 65:1013–20

    Google Scholar 

  • Bentivenga SP, Hetrick BAD. 1992. The effect of prairie management practices on mycorrhizal symbiosis. Mycologia 84:522–7

    Google Scholar 

  • Bledsoe C, Klein P, Bliss LC. 1990. A survey of mycorrhizal plants on Truelove Lowland, Devon Island, Nwt, Canada. Can J Bot 68:1848–56

    Google Scholar 

  • Breuninger M, Einig W, Magel E, Cardoso E, Hampp R. 2000. Mycorrhiza of Brazil pine (Araucaria angustifolia Bert. O. Ktze.). Plant Biol 2:4–10

    Article  Google Scholar 

  • Brown AM, Bledsoe C. 1996. Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84:703–15

    Google Scholar 

  • Brundrett M, Kendrick B. 1990. The roots and mycorrhizas of herbaceous woodland plants 1. Quantitative aspects of morphology. New Phytol 114:457–68

    Google Scholar 

  • Carrillo-Garcia A, de la Luz JLL, Bashan Y, Bethlenfalvay GJ. 1999. Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor Ecol 7:321–35

    Article  Google Scholar 

  • Christie P, Kilpatrick DJ. 1992. Vesicular arbuscular mycorrhiza infection in cut grassland following long-term slurry application. Soil Biol Biochem 24:325–30

    Article  Google Scholar 

  • Collier SC, Yarnes CT, Herman RP. 2003. Mycorrhizal dependency of Chihuahuan Desert plants is influenced by life history strategy and root morphology. J Arid Environ 55:223–9

    Article  Google Scholar 

  • Cooke JC, Butler RH, Madole G. 1993. Some observations on the vertical distribution of vesicular arbuscular mycorrhizae in roots of salt marsh grasses growing in saturated soils. Mycologia 85:547–50

    Google Scholar 

  • Cooke MA, Widden P, Ohalloran I. 1992. Morphology, incidence and fertilization effects on the vesicular arbuscular mycorrhizae of Acer saccharum in a Quebec hardwood forest. Mycologia 84:422–30

    Google Scholar 

  • Cornwell WK, Bedford BL, Chapin CT. 2001. Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization. Am J Bot 88:1824–9

    Google Scholar 

  • Currah RS, Vandyk M. 1986. A survey of some perennial vascular plant species native to Alberta for occurrence of mycorrhizal fungi. Can Field Nat 100:330–42

    Google Scholar 

  • de Alwis DP, Abeynayake K. 1980. A survey of mycorrhizae in some forest trees of Sri Lanka. In: Mikola P, Ed. Tropical mycorrhiza research. Oxford: Oxford University Press, p 146–53

    Google Scholar 

  • Dekkers TBM, van der Werff PA. 2001. Mutualistic functioning of indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of long-term phosphate fertilization. Mycorrhiza 10:195–201

    Article  Google Scholar 

  • Diaz S, 1996. Effects of elevated [CO2] at the community level mediated by root symbionts. Plant Soil 187:309–20

    CAS  Google Scholar 

  • Dilly O, Bach HJ, Buscot F, Eschenbach C, Kutsch WL, Middelhoff U, Pritsch K, Munch JC. 2000. Characteristics and energetic strategies of the rhizosphere in ecosystems of the Bornhoved Lake district. Appl Soil Ecol 15:201–10

    Article  Google Scholar 

  • Egerton-Warburton LM, Allen EB. 2000. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–96

    Google Scholar 

  • Ellis JR, Roder W, Mason SC. 1992. Grain sorghum soybean rotation and fertilization influence on vesicular-arbuscular mycorrhizal fungi. Soil Sci Soci Am J 56:789–94

    Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT, Figge DAH. 1999. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am Midl Nat 142:55–70

    Google Scholar 

  • Finlay R, Soderstrom B. 1992. Mycorrhiza and carbon flow to the soil. In: Allen MF, Ed. Mycorrhizal functioning: an integrative plant-fungal process. New York: Chapman and Hall, p 134–62

    Google Scholar 

  • Frioni L, Minasian H, Volfovicz R. 1999. Arbuscular mycorrhizae and ectomycorrhizae in native tree legumes in Uruguay. Forest Ecol Manage 115:41–7

    Google Scholar 

  • Galloway JN, Cowling EB. 2002. Reactive nitrogen and the world: 200 years of change. AMBIO J Hum Environ 31:64–71

    Google Scholar 

  • Gaur A, van Greuning JV, Sinclair RC, Eicker A. 1999. Arbuscular mycorrhizas of Vangueria infausta Burch. subsp infausta (Rubiaceae) from South Africa. S Afr J Bot 65:434–6

    Google Scholar 

  • Gemma JN, Koske RE. 1990. Mycorrhizae in recent volcanic substrates in Hawaii. Am J Bot 77:1193–200

    Google Scholar 

  • Genney DR, Hartley SE, Alexander IJ. 2001. Arbuscular mycorrhizal colonization increases with host density in a heathland community. New Phytol 152:355–63

    Article  Google Scholar 

  • Germida JJ, Walley FL. 1996. Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol Fertil Soils 23:113–20

    CAS  Google Scholar 

  • Gordon WS, Jackson RB. 2003. Global distribution of root nutrient concentrations in terrestrial ecosystems. Oak Ridge (TN): Oak Ridge National Laboratory Distributed Active Archive Center. [on-line] URL: http://www.daac.ornl.gov

  • Grogan P, Chapin FS. 2000. Nitrogen limitation of production in a Californian annual grassland: the contribution of arbuscular mycorrhizae. Biogeochemistry 49:37–51

    Article  CAS  Google Scholar 

  • Hafner H, George E, Bationo A, Marschner H. 1993. Effect of crop residues on root growth and phosphorus acquisition of pearl millet in an acid sandy soil in Niger. Plant Soil 150:117–27

    Article  CAS  Google Scholar 

  • Harley JL. 1971. Fungi in ecosystems. J Appl Ecol 8:627–42

    Google Scholar 

  • Harris D, Paul EA. 1987. Carbon requirements of vesicular-arbuscular mycorrhizae. In: Safir GR, Ed. Ecophysiology of VA Mycorrhizae. Boca Raton, FL: CRC Press, p 93–105

    Google Scholar 

  • Harris D, Pacovsky RS, Paul EA. 1985. Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol 101:427–40

    CAS  Google Scholar 

  • He XL, Mouratov S, Steinberger Y. 2002. Spatial distribution and colonization of arbuscular mycorrhizal fungi under the canopies of desert halophytes. Arid Land Res Manage 16:149–60

    Google Scholar 

  • Helm DJ, Carling DE. 1990. Use of on-site mycorrhizal inoculum for plant establishment on abandoned mined lands. Minneapolis: J0289003, U.S. Bureau of Mines

  • Herrera RA, Ferrer RL. 1980. Vesicular-arbuscular mycorrhiza in Cuba. In: Mikola P, Ed. Tropical mycorrhiza research. Oxford: Oxford University Press, p 132–62

    Google Scholar 

  • Hicks PM, Loynachan TE. 1987. Phosphorus fertilization reduces vesicular arbuscular mycorrhizal infection and changes nodule occupancy of field grown soybean. Agron J 79:841–4

    Google Scholar 

  • Hodge A. 1996. Impact of elevated CO2 on mycorrhizal associations and implications for plant growth. Biol Fertil Soils 23:388–98

    CAS  Google Scholar 

  • Hutchinson TC, Watmough SA, Sager EPS, Karagatzides JD. 1998. Effects of excess nitrogen deposition and soil acidification on sugar maple (Acer saccharum) in Ontario, Canada: an experimental study. Can J Forest Res 28:299–310

    CAS  Google Scholar 

  • Hutchinson TC, Watmough SA, Sager EPS, Karagatzides JD. 1999. The impact of simulated acid rain and fertilizer application on a mature sugar maple (Acer saccharum Marsh.) forest in central Ontario Canada. Water Air Soil Pollut 109:17–39

    Article  CAS  Google Scholar 

  • Ingham ER, Wilson MV. 1999. The mycorrhizal colonization of six wetland plant species at sites differing in land use history. Mycorrhiza 9:233–5

    Article  Google Scholar 

  • Ingleby K, Diagne O, Deans JD, Lindley DK, Neyra M, Ducousso M. 1997. Distribution of roots, arbuscular mycorrhizal colonisation and spores around fast-growing tree species in Senegal. Forest Ecol Manage 90:19–27

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proc Nat Acad Sci USA 94:7362–6

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen I, Rosendahl L. 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Google Scholar 

  • Jansen AE, Dighton J. 1990. Effects on air pollutants on ectomycorrhiza. A review. Air Pollut Res Report 30:1–58

    Google Scholar 

  • Johnson D, Leake JR, Ostle N, Ineson P, Read DJ. 2002a. In situ (CO2)-C-13 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–34

    Article  CAS  Google Scholar 

  • Johnson D, Leake JR, Read DJ. 2002b. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of C-14. Soil Biol Biochem 34:1521–4

    CAS  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB. 2003. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–908

    Google Scholar 

  • Johnson-Green PC, Kenkel NC, Booth T. 1995. The distribution and phenology of arbuscular mycorrhizae along an inland salinity gradient. Can J Bot 73:1318–27

    Google Scholar 

  • Johnston S, Ryan M. 2000. Occurrence of arbuscular mycorrhizal fungi across a range of alpine humus soil conditions in Kosciuszko National Park, Australia. Arctic Antarct Alp Res 32:255–61

    Google Scholar 

  • Kabir Z, O’Halloran IP, Widden P, Hamel C. 1998. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza 8:53–5

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I. 2001. Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65–79

    Article  CAS  Google Scholar 

  • Khan AG. 1974. Occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of endogone spores in adjacent soils. J Gen Microbiol 81:7–14

    Google Scholar 

  • Khan AG. 1993. Vesicular arbuscular mycorrhizae (VAM) in aquatic trees of New South Wales, Australia, and their importance at land–water interface. In: Gopal B, Hillbircht-Ilkowska A, Wetzel RG, Eds. Wetlands and ecotones: studies on land–water interactions. National Institute of Ecology, New Delhi: p 173–80

    Google Scholar 

  • Kharbuli PP, Mishra RR. 1982. Survey of mycorrhizal association in some trees of northeastern India. Acta Bot Indica 10:192–5

    Google Scholar 

  • Kim CK, Weber DJ. 1985. Distribution of VA mycorrhiza on halophytes on inland salt playas. Plant Soil 83:207–14

    Article  CAS  Google Scholar 

  • Koerselman W, Meuleman AFM. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–50

    Google Scholar 

  • Koske RE, Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Google Scholar 

  • Koske RE, Gemma JN. 1990. VA mycorrhizae in strand vegetation of Hawaii: evidence for long-distance codispersal of plants and fungi. Am J Bot 77:466–74

    Google Scholar 

  • Koske RE, Gemma JN. 1997. Mycorrhizae and succession in plantings of beachgrass in sand dunes. Am J Bot 84:118–30

    Google Scholar 

  • Koske RE, Gemma JN, Flynn T. 1992. Mycorrhizae in Hawaiian angiosperms: a survey with implications for the origin of the native flora. Am J Bot 79:853–62

    Google Scholar 

  • Kucey RMN, Paul EA. 1982. Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol Biochem 14:407–12

    Google Scholar 

  • Kulkarni SS, Raviraja NS, Sridhar KR. 1997. Arbuscular mycorrhizal fungi of tropical sand dunes of west coast of India. J Coast Res 13:931–6

    Google Scholar 

  • Lansing JL. 2003. Comparing arbuscular and ectomycorrhizal fungal communities in seven North American forests and their response to nitrogen fertilization. Davis (CL): University of California Davis, PhD dissertation

  • Lawrence B, Fisk MC, Fahey TJ, Suarez ER. 2003. Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acer saccharum). New Phytol 157:145–53

    Article  Google Scholar 

  • Liu A, Hamel C, Elmi A, Costa C, Ma B, Smith DL. 2002. Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can J Soil Sci 82:271–8

    CAS  Google Scholar 

  • Lodge DJ. 1989. The influence of soil moisture and flooding on formation of VA-endo- and ectomycorrhizae in Populus and Salix. Plant Soil 117:243–53

    Article  Google Scholar 

  • Louis I, Lim G. 1987. Spore density and root colonization of vesicular-arbuscular mycorrhizas in tropical soil. Trans Br Mycol Soc 88:207–12

    Google Scholar 

  • Lovera M, Cuenca G. 1996. Arbuscular mycorrhizal infection in Cyperaceae and Gramineae from natural, disturbed and restored savannas in La Gran Sabana, Venezuela. Mycorrhiza 6:111–8

    Article  Google Scholar 

  • Maffia B, Nadkarni NM, Janos DP. 1993. Vesicular arbuscular mycorrhizae of epiphytic and terrestrial Piperaceae under field and greenhouse conditions. Mycorrhiza 4:5–9

    Article  Google Scholar 

  • Marler MJ, Zabinski CA, Wojtowicz T, Callaway RM. 1999. Mycorrhizae and fine root dynamics of Centaurea maculosa and native bunchgrasses in western Montana. Northwest Sci 73:217–24

    Google Scholar 

  • Martin J, Bereau M, Louisanna E, Ocampo JA. 2001. Arbuscular mycorrhizas in Dicorynia guianensis and Eperua falcata trees from primary tropical rain forest of French Guiana. Symbiosis 31:283–91

    Google Scholar 

  • McGee P. 1986. Mycorrhizal associations of plant species in a semiarid community. Aust J Bot 34:585–93

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Google Scholar 

  • Medina OA, Kretschmer AE, Sylvia DM. 1988. The occurrence of vesicular arbuscular mycorrhizal fungi on tropical forage legumes in south Florida. Trop Grassl 22:73–8

    Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D. 1996. Leaf N-15 abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal, and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63

    Google Scholar 

  • Miller MH, McGonigle TP, Addy HD. 1995. Functional ecology of vesicular-arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit Rev Biotechnol 15:241–55

    Google Scholar 

  • Miller SP. 2000. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol 145:145–55

    Article  Google Scholar 

  • Mohankumar V, Mahadevan A. 1986. Survey of vesicular arbuscular mycorrhizae in mangrove vegetation. Curr Sci 55:936–6

    Google Scholar 

  • Mosse B. 1973. Plant growth responses to vesicular-arbuscular mycorrhizae: IV. In soil given additional phosphate. New Phytol 72:127–6

    Google Scholar 

  • Moyersoen B, Fitter AH, Alexander IJ. 1998. Spatial distribution of ectomycorrhizas and arbuscular mycorrhizas in Korup National Park rain forest, Cameroon, in relation to edaphic parameters. New Phytol 139:311–20

    Article  Google Scholar 

  • Moyersoen B, Becker P, Alexander IJ. 2001. Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests? New Phytol 150:591–9

    Article  Google Scholar 

  • Mullen RB, Schmidt SK. 1993. Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus—implications for the functioning of mycorrhizae in alpine systems. Oecologia 94:229–34

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K. 2000a. Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza 9:297–313

    Google Scholar 

  • Muthukumar T, Udaiyan K. 2000b. Influence of organic manures on arbuscular mycorrhizal fungi associated with Vigna unguiculata (L.) Walp. in relation to tissue nutrients and soluble carbohydrate in roots under field conditions. Biol Fertil Soils 31:114–20

    Article  Google Scholar 

  • Nakatsubo T, Kaniyu M, Nakagoshi N, Hoikoshi T. 1994. Distribution of vesicular-arbuscular mycorrhizae in plants growing in a river floodplain. Bull Jpn Soc Microb Ecol 9:109–17

    Google Scholar 

  • Nehl DB, McGee PA, Torrisi V, Pattinson GS, Allen SJ. 1999. Patterns of arbuscular mycorrhiza down the profile of a heavy textured soil do not reflect associated colonization potential. New Phytol 142:495–503

    Article  Google Scholar 

  • Neville J, Tessier JL, Morrison I, Scarratt J, Canning B, Klironomos JN. 2002. Soil depth distribution of ecto- and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut. Appl Soil Ecol 19:209–16

    Article  Google Scholar 

  • Newman EI, Reddell P. 1987. The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–51

    Google Scholar 

  • Newman EI, Heap AJ, Lawley RA. 1981. Abundance of mycorrhizas and root surface microorganisms of Plantago lanceolata in relation to soil and vegetation—a multivariate approach. New Phytol 89:95–108

    CAS  Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA. 2001. Arbuscular mycorrhizal associations in the southern Simpson Desert. Aust J Bot 49:493–99

    Google Scholar 

  • Onipchenko VG, Zobel M. 2000. Mycorrhiza, vegetative mobility and responses to disturbance of alpine plants in the Northwestern Caucasus. Folia Geobot 35:1–11

    Google Scholar 

  • Paul EA, Clark FE. 1996. Soil microbiology and biochemistry, 2nd ed. San Diego: Academic

    Google Scholar 

  • Pellet D, El-Sharkawy MA. 1993. Cassava varietal response to phosphorus fertilization. 2. Phosphorus uptake and use efficiency. Field Crops Res 35:13–20

    Google Scholar 

  • Perez CA, Frangi JL. 2000. Grassland biomass dynamics along an altitudinal gradient in the Pampa. J Range Manage 53:518–28

    Google Scholar 

  • Preble E. 1998. Grab it! Raleigh (NC): DataTrend Software, Inc

    Google Scholar 

  • Rabatin SC. 1979. Seasonal and edaphic variation in vesicular arbuscular mycorrhizal infection of grasses by Glomus tenuis. New Phytol 83:95–102

    Google Scholar 

  • Ragupathy S, Mahadevan A. 1993. Distribution of vesicular arbuscular mycorrhizae in the plants and rhizosphere soils of the tropical plains, Tamil-Nadu, India. Mycorrhiza 3:123–36

    Article  Google Scholar 

  • Randerson JT, Thompson MV, Conway TJ, Fung IY, Field CB. 1997. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem Cycles 11:535–60

    Article  CAS  Google Scholar 

  • Read DJ. 1984. The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH. Rayner ADM, Eds. The ecology and physiology of the fungal mycelium. Cambridge: Cambridge University Press, p 215–40

    Google Scholar 

  • Read DJ. 1991a. Mycorrhizas in ecosystems. Experientia 47:376–91

    Article  Google Scholar 

  • Read DJ. 1991b. Mycorrhizas in ecosystems—nature’s response to the “Law of the minimum”. In: Hawksworth DL, Ed. Frontiers in mycology. Regensburg: CAB International, p 101–30

    Google Scholar 

  • Read DJ, Haselwandter K. 1981. Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–52

    Google Scholar 

  • Read DJ, Koucheki HK, Hodgson J. 1976. Vesicular-arbuscular mycorrhiza in natural vegetation systems. New Phytol 77:641–53

    Google Scholar 

  • Reddell P, Hopkins MS, Graham AW. 1996. Functional association between apogeotropic aerial roots, mycorrhizas and paper-barked stems in a lowland tropical rainforest in North Queensland. J Trop Ecol 12:763–77

    Google Scholar 

  • Requena N, Jeffries P, Barea JM. 1996. Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–7

    CAS  PubMed  Google Scholar 

  • Rillig MC, Field CB, Allen MF. 1999. Fungal root colonization responses in natural grasslands after long-term exposure to elevated atmospheric CO2. Glob Change Biol 5:577–85

    Article  Google Scholar 

  • Rillig MC, Hernandez GY, Newton PCD. 2000. Arbuscular mycorrhizae respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource balance model. Ecol Lett 3:475–8

    Article  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–77

    Article  CAS  Google Scholar 

  • Rillig MC, Treseder KK, Allen MF. 2002a. Global change and mycorrhizal fungi. In: van der Heijden M, Sanders I, Eds. Mycorrhizal ecology. Berlin Heidelberg New york: Springer, p 135–60

    Google Scholar 

  • Rillig MC, Wright SF, Shaw MR, Field CB. 2002b. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97:52–8

    Article  Google Scholar 

  • Roberts C, Allen Jones J. 2000. Soil patchiness in juniper-sagebrush-grass communities of central Oregon. Plant Soil 223:45–61

    Article  CAS  Google Scholar 

  • Rogers HH, Prior SA, O’Neill EG. 1992. Cotton roots and rhizosphere responses to free-air CO2 enrichment. Crit Rev Plant Sci 11:251–63

    CAS  Google Scholar 

  • Runion GB, Curl EA, Rogers HH, Backman PA, Rodriguezkabana R, Helms BE. 1994. Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric Forest Meteorol 70:117–30

    Article  Google Scholar 

  • Ruotsalainen AL, Vare H, Vestberg M. 2002. Seasonality of root fungal colonization in low-alpine herbs. Mycorrhiza 12:29–36

    CAS  PubMed  Google Scholar 

  • Sanders IR, Fitter AH. 1992. The ecology and functioning of vesicular-arbuscular mycorrhizas in co-existing grassland species. New Phytol 120:517–24

    Google Scholar 

  • Sanginga N, Okogun JA, Akobundu IO, Kang BT. 1996. Phosphorus requirement and nodulation of herbaceous and shrub legumes in low P soils of a Guinean savanna in Nigeria. Appl Soil Ecol 3:247–55

    Article  Google Scholar 

  • Sasaki A, Fujiyoshi M, Shidara S, Nakatsubo T. 2001. Effects of nutrients and arbuscular mycorrhizal colonization on the growth of Salix gracilistyla seedlings in a nutrient-poor fluvial bar. Ecol Res 16:165–72

    Article  Google Scholar 

  • Saugier B, Roy J, Mooney HA. 2001. Estimates of global terrestrial productivity: Converging toward a single number? In: Roy J, Saugier B, Mooney HA, Eds. Terrestrial global productivity. San Diego (CA): Academic, p 543–57

    Google Scholar 

  • Sengupta A, Chaudhuri S. 1990. Vesicular arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges River Delta in West Bengal (India). Plant Soil 122:111–3

    Google Scholar 

  • Smith SE, Read DJ. 1997. Mycorrhizal symbiosis, 2nd ed. San Diego: Academic

    Google Scholar 

  • Smith MD, Hartnett DC, Rice CW. 2000. Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biol Biochem 32:935–46

    CAS  Google Scholar 

  • Smits WTM. 1994. Dipterocarpaceae: mycorrhizae and regeneration. Wageningen (The Netherlands): The Tropenbos Foundation

    Google Scholar 

  • SPSS. 2000. Systat 10. Chicago

  • St John TV. 1980. A survey of micorrhizal infection in an Amazonian rain forest. Acta Amazonica 10:527–33

    Google Scholar 

  • Staddon PL, Fitter AH. 1998. Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trends Ecol Evol 13:455–8

    Article  Google Scholar 

  • Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH. 2003. Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Glob Change Biol 9:186–194

    Article  Google Scholar 

  • Sylvia DM, Jarstfer AG. 1997. Distribution of mycorrhiza on competing pines and weeds in a southern pine plantation. Soil Sci Soc Am J 61:139–44

    CAS  Google Scholar 

  • Tadych M, Blaszkowski J. 2000. Arbuscular fungi and mycorrhizae (Glomales) of the Slowinski National Park, Poland. Mycotaxon 74:463–82

    Google Scholar 

  • Tarkalson DD, Jolley VD, Robbins CW, Terry RE. 1998. Mycorrhizal colonization and nutrition of wheat and sweet corn grown in manure-treated and untreated topsoil and subsoil. J Plant Nutr 21:1985–99

    CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK. 1992. The effect of long term applications of phosphorus fertilizer on populations of vesicular arbuscular mycorrhizal fungi in pastures. Aust J Agric Res 43:1131–42

    Article  CAS  Google Scholar 

  • Titus JH, Leps J. 2000. The response of arbuscular mycorrhizae to fertilization, mowing, and removal of dominant species in a diverse oligotrophic wet meadow. Am J Bot 87:392–401

    PubMed  Google Scholar 

  • Toth R, Miller RM, Jarstfer AG, Alexander T, Bennett EL. 1991. The calculation of intraradical fungal biomass from percent colonization in vesicular-arbuscular mycorrhizae. Mycologia 83:553–8

    Google Scholar 

  • Treseder KK. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–55

    Article  Google Scholar 

  • Treseder KK, Allen MF. 2000. Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 47:189–200

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF. 2002. Direct N and P limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–15

    Article  Google Scholar 

  • Treseder KK, Vitousek PM. 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–54

    Google Scholar 

  • Treseder KK, Mack MC, Cross A. 2004. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol Appl 14:1826–38

    Google Scholar 

  • Turner SD, Amon JP, Schneble RM, Friese CF. 2000. Mycorrhizal fungi associated with plants in ground-water fed wetlands. Wetlands 20:200–4

    Google Scholar 

  • van der Heijden EW, Vries FW, Kuyper TW. 1999. Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. I. Above-ground and below-ground views of ectomycorrhizal fungi in relation to soil chemistry. Can J Bot 77:1821–32

    Google Scholar 

  • Van Hoewyk D, Wigand C, Groffman PM. 2001. Endomycorrhizal colonization of Dasiphora floribunda, a native plant species of calcareous wetlands in eastern New York State, USA. Wetlands 21:431–6

    Google Scholar 

  • Van Veen JA, Paul EA. 1979. Conversion of biovolume measurements of soil organisms, grown under various moisture tensions, to biomass and their nutrient content. Appl Environ Microbiol 37:686–92

    PubMed  Google Scholar 

  • Vanlauwe B, Nwoke OC, Diels J, Sanginga N, Carsky RJ, Deckers J, Merckx R. 2000. Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by Mucuna pruriens, Lablab purpureus and maize. Soil Biol Biochem 32:2063–77

    CAS  Google Scholar 

  • Vardavakis E. 1990. Seasonal fluctuations of soil microfungi in correlation with some soil enzyme activities and VA mycorrhizae associated with certain plants of a typical calcixeroll soil in Greece. Mycologia 82:715–26

    Google Scholar 

  • Veenendaal EM, Monnaapula SC, Gilika T, Magole IL. 1992. Vesicular arbuscular mycorrhizal infection of grass seedlings in a degraded semiarid savanna in Botswana. New Phytol 121:477–85

    Google Scholar 

  • Visser S, Maynard D, Danielson RM. 1998. Response of ecto- and arbuscular mycorrhizal fungi to clear-cutting and the application of chipped aspen wood in a mixedwood site in Alberta, Canada. Appl Soil Ecol 7:257–69

    Article  Google Scholar 

  • Wang FY, Liu RJ, Lin XG, Zhou JM. 2004. Arbuscular mycorrhizal status of wild plants in saline–alkaline soils of the Yellow River Delta. Mycorrhiza 14:133–7

    PubMed  Google Scholar 

  • Wardle DA. 1992. A comparative assessment of factors which influence microbial biomass, carbon, and nitrogen levels in soil. Biol Rev Camb Philos Soc 67:321–58

    Google Scholar 

  • Wetzel PR, vanderValk AG. 1996. Vesicular-arbuscular mycorrhizae in prairie pothole wetland vegetation in Iowa and North Dakota. Can J Bot (Revue Canadienne Botanique) 74:883–90

    Google Scholar 

  • Whitbeck JL. 2001. Effects of light environment on vesicular-arbuscular mycorrhiza development in Inga leiocalycina, a tropical wet forest tree. Biotropica 33:303–11

    Article  Google Scholar 

  • Wilson GWT, Hartnett DC, Smith MD, Kobbeman K. 2001. Effects of mycorrhizae on growth and demography of tallgrass prairie forbs. Am J Bot 88:1452–7

    Google Scholar 

  • Wright SF, Upadhyaya A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to L. Marzec, D. Thalp, and A. Reynolds for technical support, and to those investigators whose studies are included in the dataset. This work was funded by grants from the Mellon Foundation, NSF Ecosystems (DEB 010776, DEB 0122445) and the University of Pennsylvania Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen K. Treseder.

Appendix

Appendix

Appendix 1. Prevalence of Arbuscular Mycorrhizal Fungi and their Host Plants, as Reported in Published Studies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treseder, K.K., Cross, A. Global Distributions of Arbuscular Mycorrhizal Fungi. Ecosystems 9, 305–316 (2006). https://doi.org/10.1007/s10021-005-0110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-005-0110-x

Keywords

Navigation