, Volume 8, Issue 7, pp 748–759 | Cite as

Aquatic Terrestrial Linkages Along a Braided-River: Riparian Arthropods Feeding on Aquatic Insects

  • Achim PaetzoldEmail author
  • Carsten J. Schubert
  • Klement Tockner


Rivers can provide important sources of energy for riparian biota. Stable isotope analysis (δ13C, δ15N) together with linear mixing models, were used to quantify the importance of aquatic insects as a food source for a riparian arthropod assemblage inhabiting the shore of the braided Tagliamento River (NE Italy). Proportional aquatic prey contributions to riparian arthropod diets differed considerable among taxa. Carabid beetles of the genus Bembidion and Nebria picicornis fed entirely on aquatic insects. Aquatic insects made up 80% of the diet of the dominant staphylinid beetle Paederidus rubrothoracicus. The diets of the dominant lycosid spiders Arctosa cinerea and Pardosa wagleri consisted of 56 and 48% aquatic insects, respectively. In contrast, the ant Manica rubida fed mainly on terrestrial sources. The proportion of aquatic insects in the diet of lycosid spiders changed seasonally, being related to the seasonal abundance of lycosid spiders along the stream edge. The degree of spatial and seasonal aggregation of riparian arthropods at the river edge coincided with their proportional use of aquatic subsidies. The results suggest that predation by riparian arthropods is a quantitatively important process in the transfer of aquatic secondary production to the riparian food web.


boundary Carabidae food web Formicidae Lycosidae riparian stable isotopes Staphylinidae subsidy 



We thank Drs John Jackson, Christopher Robinson, David Post, Prof. Robert Naiman, and two anonymous reviewers for valuable comments on the manuscript. We are grateful to Jacqueline Bernet for help in the field, and to Antonin Mares of the isotope laboratory at EAWAG, Kastanienbaum. The research has been supported by a grant of the Rhone-Thur project (EAWAG) and by grant 0-20572-98 from the Forschungskommission of the ETH, Zürich.


  1. Arscott DB, Tockner K, van der Nat D, Ward JV. 2002. Aquatic habitat dynamics along a braided Alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems 5:802–14Google Scholar
  2. Bastow JL, Sabo JL, Finlay JC, Power ME. 2002. A basal aquatic-terrestrial trophic link in rivers: algal subsidies via shore-dwelling grasshoppers. Oecologia 131:261–8CrossRefGoogle Scholar
  3. Ben-David M, Hanley TA, Schell DM. 1998. Fertilization of terrestrial vegetation by spawning salmon: the role of flooding and predator activity. Oikos 83:47–55Google Scholar
  4. Bustamante RH, Branch GM, Eekhout S. 1995. Maintenance of an exceptional intertidal grazer biomass in South Africa: subsidy by subtidal kelp. Ecology 76:2314–29Google Scholar
  5. Cadenasso ML, Pickett STA, Weathers KC, Jones CG. 2003. A framework for a theory of ecological boundaries. BioScience 53:750–8Google Scholar
  6. Collier KJ, Bury S, Gibbs M. 2002. A stable isotope study of linkages between stream and terrestrial food webs through spider predation. Freshwater Biol 47:1651–9CrossRefGoogle Scholar
  7. Derraik JGB, Closs GP, Dickinson KJM, Sirvid P, Barratt BIP, Patrick BH. 2002. Arthropod morphospecies versus taxonomic species: a case study with Araneae, Coleoptera, and Lepidoptera. Conserv Biol 16:1015–23CrossRefGoogle Scholar
  8. Fisher SG, Grimm NB, Martí E, Holmes RM, Jones Jr. JB. 1998. Material spiralling in stream corridors: a telescoping ecosystem model. Ecosystems 1:19–34CrossRefGoogle Scholar
  9. Fisher SG, Likens GE. 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–39Google Scholar
  10. Foelix RF. 1996. Biology of spiders, 2nd edition. Oxford: Oxford University PressGoogle Scholar
  11. Forster R, Forster L. 1999. Spiders of New Zealand and their worldwide kin. University of Otago Press, Dunedin, New ZealandGoogle Scholar
  12. Framenau V, Dietrich M, Reich M, Plachter H. 1996. Life cycle, habitat selection and home ranges of Arctosa cinerea (Fabricius, 1777) (Araneae: Lycosidae) in a braided section of the upper Isar (Germany, bavaria). Revue Suisse de Zoologie vol. hors serie:223–34Google Scholar
  13. Framenau V, Manderbach R, Baehr M. 2002. Riparian gravel banks of upland and lowland rivers in Victoria (south-east Australia): arthropod community structure and life-history patterns along a longitudinal gradient. Aust J of Zool 50:103–23Google Scholar
  14. Gurnell AM, Petts GE, Hannah DM, Smith BPG, Edwards PJ, Kollmann J, Ward JV, Tockner K. 2001. Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surf Proc Land 26:31–62Google Scholar
  15. Helfield JM, Naiman RJ. 2001. Effects of salmon-derived nitrogen on riparian forest growth and implications for stream productivity. Ecology 82:2403–9Google Scholar
  16. Hering D. 1995. Nahrung und Nahrungskonkurrenz von Laufkäfern und Ameisen in einer nordalpinen Wildflussaue. Arch Hydrobiol Suppl 101:439–53Google Scholar
  17. Hering D, Plachter H. 1997. Riparian ground beetles (Coeloptera, Carabidae) preying on aquatic invertebrates: a feeding strategy in alpine floodplains. Oecologia 111:261–270CrossRefGoogle Scholar
  18. Jackson JK, Fisher SG. 1986. Secondary production, emergence, and export of aquatic insects of a Sonoran desert stream. Ecology 67:629–38Google Scholar
  19. Karrenberg S, Kollmann J, Edwards PJ, Gurnell AM, Petts GE. 2003. Patterns in woody vegetation along the active zone of a near-natural Alpine river. Basic Appl Ecol 4:157–66CrossRefGoogle Scholar
  20. Kolb A. 1958. Nahrung und Nahrungsaufnahme bei Fledermäusen. Zeitschrift für Säugetierkunde 23:84–95Google Scholar
  21. Manderbach R, Hering D. 2001. Typology of riparian ground beetle communities (Coleoptera, Carabidae, Bembidion spec.) in Central Europe and adjacent areas. Arch Hydrobiol 152:583–608Google Scholar
  22. Manderbach R, Plachter H. 1997. Lebensstrategie des Laufkäfers Nebria picicornis (FABR. 1801) (Coleoptera, Carabidae) an Fliessgewässern. Beiträge der Gesellschaft für Ökologie 3:17–27Google Scholar
  23. Minagawa M, Wada E. 1984. Stepwise enrichment of 15N along food chains: Further evidence and the relation between d15N and animal age. Geochimi Cosmochim Ac 48:1135–40Google Scholar
  24. Naiman RJ, Bilby RE, Schindler DE, Helfield JM. 2002. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5:399–417CrossRefGoogle Scholar
  25. Naiman RJ, Décamps H. 1997. The ecology of interfaces: riparian zones. Ann Rev of Ecol Syst 28:621–58Google Scholar
  26. Nakano S, Murakami M. 2001. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. P Nat Acad Sci USA 98:166–70Google Scholar
  27. Oelbermann K, Scheu S. 2002. Stable isotope enrichment (d15N and d13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality. Oecologia 130:337–44CrossRefGoogle Scholar
  28. Ostrom PH, Colunga-Garcia M, Gage SH. 1997. Establishing pathways of energy flow for insect predators using stable isotope ratios: field and laboratory evidence. Oecologia 109:108–113CrossRefGoogle Scholar
  29. Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  30. Petts GE, Gurnell AM, Gerrard AJ, Hannah DM, Hansford B, Morrissey I, Edwards PJ, Kollmann J, Ward JV, Tockner K, Smith BPG. 2000. Longitudinal variations in exposed riverine sediments: a context for the ecology of the Fiume Tagliamento, Italy. Aquat Conserv 10:249–66Google Scholar
  31. Phillips DL, Gregg JW. 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179Google Scholar
  32. Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Ann Rev Ecol Syst 28:289–316CrossRefGoogle Scholar
  33. Polis GA, Hurd SD. 1996. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396–423Google Scholar
  34. Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718Google Scholar
  35. Power ME, Rainey WE. 2000. Food webs and resource sheds: towards spatially delimiting trophic interactions. In: Hutchings MJ, John EA, Stewart AJA, Ed. The ecological consequences of environmental heterogeneity. Blackwell Science, Cambridge, UK, pp 291–314Google Scholar
  36. Rounick JS, Winterbourn MJ. 1986. Stable carbon isotopes and carbon flow in ecosystems. BioScience 36:171–77Google Scholar
  37. Sabo JL, Power ME. 2002. River-watershed exchange: Effects of riverine subsidies on riparian lizards and their terrestrial prey. Ecology 83:1860–69Google Scholar
  38. Sadler JP, Bell D, Fowles A. 2004. The hydroecological controls and conservation value of beetles on exposed riverine sediments in England and Wales. Biol Conser 118:41–56Google Scholar
  39. Sanzone DM, Meyer JL, Marti E, Gardiner EP, Tank JL, Grimm NB. 2003. Carbon and nitrogen transfer from a desert stream to riparian predators. Oecologia 134:238–50PubMedGoogle Scholar
  40. Schubert CJ, Nielsen B. 2000. Effects of decarbonation treatments on d13C values in marine sediments. Mar Chem 72:55–59CrossRefGoogle Scholar
  41. Stapp P, Polis GA. 2003. Marine resources subsidize insular rodent populations in the Gulf of California, Mexico. Oecologia 134:496–504PubMedGoogle Scholar
  42. Thiele HU. 1977. Carabid beetles in their environments. Berlin: SpringerGoogle Scholar
  43. Thorp JH, Delong MD, Greenwood KS, Casper AF. 1998. Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia 117:551–63CrossRefGoogle Scholar
  44. Tieszen LL, Boutton TW, Tesdahl KG, Slade NA. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for d13C analysis of diet. Oecologia 57:32–7CrossRefGoogle Scholar
  45. Tockner K, Ward JV, Arscott DB, Edwards PJ, Kollmann J, Gurnell AM, Petts GE, Maiolini B. 2003. The Tagliamento River: a model ecosystem of European importance. Aquat Sci 65:239–53CrossRefGoogle Scholar
  46. Uhlmann V. 2001. Die Uferzoozönosen in natürlichen und regulierten Flussabschnitten. Diplomarbeit, ETH ZürichGoogle Scholar
  47. U.S. Environmental Protection Agency 2001. Exel spreadsheet, Isoerror1_04.
  48. van der Nat D, Schmidt AP, Tockner K, Edwards PJ, Ward JV. 2002. Inundation dynamics in braided floodplains: Tagliamento River, Northeast Italy. Ecosystems 5:636–647Google Scholar
  49. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Can J Fish Aquat Sci 37:130–37CrossRefGoogle Scholar
  50. Wallace JB, Eggert SL, Meyer JL, Webster JR. 1999. Effects of resource limitation on a detrital based ecosystem. Ecol Monogr 69:409–42Google Scholar
  51. Ward JV. 1989. The four-dimensional nature of lotic ecosystems. J N Am Benthol Soc 8:2–8Google Scholar
  52. Ward JV, Tockner K, Edwards PJ, Kollmann J, Bretschko G, Gurnell AM, Petts GE, Rossaro B. 1999. A reference river system for the Alps: the ‘Fiume Tagliamento’. Regulated River 15:63–75Google Scholar
  53. Wiens JA, Clifford S, Gosz JR. 1985. Boundary dynamics: a conceptual framework for studying landscape ecosystems. Oikos 45:421–7Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Achim Paetzold
    • 1
    • 3
    Email author
  • Carsten J. Schubert
    • 2
  • Klement Tockner
    • 1
  1. 1.Department of LimnologyEAWAG/ETHSwitzerland
  2. 2.Department of Surface WaterEAWAG, Limnological Research CenterSwitzerland
  3. 3.Catchment Science CenterThe University of Sheffield North CampusUK

Personalised recommendations