, Volume 7, Issue 7, pp 740–750 | Cite as

Decomposition and Organic Matter Quality in Continental Peatlands: The Ghost of Permafrost Past



Permafrost patterning in boreal peatlands contributes to landscape heterogeneity, as peat plateaus, palsas, and localized permafrost mounds are interspersed among unfrozen bogs and fens. The degradation of localized permafrost in peatlands alters local topography, hydrology, thermal regimes, and plant communities, and creates unique peatland features called “internal lawns.” I used laboratory incubations to quantify carbon dioxide (CO2) production in peat formed under different permafrost regimes (with permafrost, without permafrost, melted permafrost), and explored the relationships among proximate organic matter fractions, nutrient concentrations, and decomposition. Peat within each feature (internal lawn, bog, permafrost mound) is more chemically similar than peat collected within the same province (Alberta, Saskatchewan) or within depth intervals (surface, deep). Internal lawn peat produces more CO2 than the other peatland types. Across peatland features, acid-insoluble material (AIM) and AIM/nitrogen are significant predictors of decomposition. However, within each peatland feature, soluble proximate fractions are better predictors of CO2 production. Permafrost stability in peatlands influences plant and soil environments, which control litter inputs, organic matter quality, and decomposition rates. Spatial patterns of permafrost, as well as ecosystem processes within various permafrost features, should be considered when assessing the fate of soil carbon in northern ecosystems.


carbon peat peatlands boreal forest permafrost climate warming decomposition organic matter quality moss bryophytes 


  1. Aerts, R, Verhoeven, JTA, Whigham, D 1999Plant-mediated controls on nutrient cycling in temperate fens and bogsEcology80217081Google Scholar
  2. Apps, MJ, Kurz, WA, Price, DT 1993

    Estimating carbon budgets of Canadian forest ecosystems using a national scale model

    Vinson, TKolchugina, T eds. Proceedings of the Workshop on Carbon Cycling in Boreal Forests and Subarctic EcosystemsUS EPA, Office of Research and DevelopmentWashington D.C.24150
    Google Scholar
  3. Beilman, DW 2001Plant community and diversity change due to localized permafrost dynamics in bogs of western CanadaCan J Bot7998393CrossRefGoogle Scholar
  4. Beilman, DW, Vitt, DH, Halsey, LA 2001Localized permafrost peatlands in western Canada: definition, distributions, and degradationArctic Antarctic Alpine Res337077Google Scholar
  5. Bergman, I, Lundberg, P, Nilsson, M 1999Microbial carbon mineralisation in an acid surface peat: effects of environmental factors in laboratory incubationsSoil Biol Biochem31186777CrossRefGoogle Scholar
  6. Bhatti, JS, Apps, MJ, Tarnocai, C 2002Estimates of soil organic carbon stocks in central Canada using three different approachesCan J For Res3280512CrossRefGoogle Scholar
  7. Camill, P, Clark, JS 2000Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundaryEcosystems353444CrossRefGoogle Scholar
  8. Camill, P, Lynch, JA, Clark, JS, Adam, JB, Jordan, B 2001Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, CanadaEcosystems446178CrossRefGoogle Scholar
  9. Charman, DJ, Aravena, R, Bryant, CL, Harkness, DD 1999Carbon isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor, southwest EnglandGeology2753942CrossRefGoogle Scholar
  10. Chasar, LS, Chanton, JP, Glaser, PH, Siegel, DI, Rivers, JS 2000Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatlandGlobal Biogeochem Cycles141095108CrossRefGoogle Scholar
  11. Environmental Canada. 1998. Canadian climate normals 1960–1990. Ottawa (Ont.): Canadian Climate Program, Atmospheric Environment ServiceGoogle Scholar
  12. Fisk, MC, Ruether, KF, Yavitt, JB 2003Microbial activity and functional composition among northern peatland ecosystemsSoil Biol Biochem35591602CrossRefGoogle Scholar
  13. Halsey, LA, Vitt, DH, Zoltai, SC 1995Disequilibrium response of permafrost in boreal continental western Canada to climate changeClim Change305773Google Scholar
  14. Hobbie, SE, Schimel, JP, Trumbore, SE, Randerson, JR 2000A mechanistic understanding of carbon storage and turnover in high-latitude soilsGlobal Change Biol6196210CrossRefGoogle Scholar
  15. Koster, EA 1995

    The response of permafrost ecosystems to climate change

    Zwerver, SRompaey, SARKok, MTJBerk, MM eds. Climate change research: evaluation and policy implication. Proceedings of the International Climate Change Research ConferenceElsevier ScienceNew York
    Google Scholar
  16. Melillo, JM, Aber, JD, Linkins, AE, Ricca, A, Fry, B, Nadelhoffer, KJ 1989Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matterPlant Soil11518998Google Scholar
  17. Moore, T, Dalva, M 1997Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubationsSoil Biol Biochem29115764CrossRefGoogle Scholar
  18. Moore, TR, Knowles, R 1989The influence of water table levels on methane and carbon dioxide levels from peatland soilsCan J Soil Sci69338CrossRefGoogle Scholar
  19. National Wetlands Working Group1988Wetlands of Canada. Ecological Land Classification Series No. 24Polyscience PublicationsMontrealGoogle Scholar
  20. Navaratnam J. 2003. A molecular ecological investigation of the archaeabacterial, eubacterial and fungal diversity in a Canadian and Siberian peatland complex [thesis]. Villanova UniversityGoogle Scholar
  21. Press, MC, Lee, JA 1982Nitrate reductase activity of Sphagnum species in the South PenninesNew Phytol9248794Google Scholar
  22. Preston, CM, Trofymow, JA, Sayer, BG, Niu, J 1997C-13 CPMAS NMR investigation of the proximate analysis of fractions used to assess litter quality in decomposition studiesCan J Bot75160113Google Scholar
  23. Preston, CM, Trofymow, JA, Working, CIDET Group 2000Variability in litter quality and its relationship to litter decay in Canadian forestsCan J Bot78126987CrossRefGoogle Scholar
  24. Raisanen, J 1997Objective comparison of patterns of CO2 induced climate change in coupled GCM experimentsClim Dynam13197211CrossRefGoogle Scholar
  25. Robinson, SD, Moore, TR 2000The influence of permafrost and fire upon carbon accumulation in high boreal peatlands, Northwest Territories, CanadaArctic Antarctic Alpine Res3215566Google Scholar
  26. SAS 1998. SAS, Release 8.02, Windows Version 4.10.1998. Cary (NC): SAS InstituteGoogle Scholar
  27. Scanlon, D, Moore, T 2000Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrateSoil Sci16515360CrossRefGoogle Scholar
  28. Shurpali, NJ, Verma, SB, Kim, J 1995Carbon dioxide exchange in a peatland ecosystemJ Geophys Res1001431926CrossRefGoogle Scholar
  29. Silvola, J, Alm, J, Ahlholm, U, Nykanen, H, Martikainen, PJ 1996CO2-fluxes from peat in boreal mires under varying temperature and moisture conditionsJ Ecol8421928Google Scholar
  30. Svensson, BH, Rosswall, T 1984In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mireOikos4334150Google Scholar
  31. Thie, J 1974Distribution and thawing of permafrost in the southern part of the discontinuous permafrost zone in ManitobaArctic27189200Google Scholar
  32. Trofymow, JA, Moore, TR, Titus, B, Prescott, C, Morrison, I, Siltanen, M, Smith, S 2002Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climateCan J For Res32789804othersCrossRefGoogle Scholar
  33. Turetsky, MR 2002Carbon storage and decay in peatlands with varying permafrost regimes [dissertation]University of AlbertaEdmontonGoogle Scholar
  34. Turetsky, MR 2003Bryophytes and their role in carbon and nitrogen cycling. New Frontiers in Bryology and LichenologyThe Bryologist106395407Google Scholar
  35. Turetsky, MR, Wieder, RK, Williams, CJ, Vitt, DH 2000Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal AlbertaEcoscience737992Google Scholar
  36. Turetsky, MR, Wieder, RK, Vitt, DH 2002Boreal peatland C fluxes under varying permafrost regimesSoil Biol Biochem3490712CrossRefGoogle Scholar
  37. Underwood, AJ 1997Experiments in ecologyCambridge University PressCambridge (UK)Google Scholar
  38. Updegraff, K, Pastor, J, Bridgham, SD, Johnston, CA 1995Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlandsEcol Appl5151163Google Scholar
  39. Verhoeven, JTA, Toth, E 1995Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenatesSoil Biol and Biochem2727175CrossRefGoogle Scholar
  40. Verhoeven, JTA, Liefveld, WM 1997The ecological significance of organochemical compounds in SphagnumActa Bot Neerland4611730Google Scholar
  41. Vitt, D, Halsey, L, Zoltai, S 1994The bog landforms of continental western Canada in relation to climate and permafrost patternsArctic Alpine Res26113Google Scholar
  42. Vitt, DH, Halsey, LA, Zoltai, SC 2000The changing landscape of Canada’s western boreal forest: the current dynamics of permafrostCan J For Res3028387CrossRefGoogle Scholar
  43. Waddington, JM, Rotenberg, PA, Warren, FJ 2001Peat CO2 production in a natural and cutover peatland: Implications for restorationBiogeochemistry5411530CrossRefGoogle Scholar
  44. Wieder, RK, Starr, S 1998Quantitative determination of organic fractions in highly organic, Sphagnum peat soilsCommunications in Soil Sci Plant Analysis2984757CrossRefGoogle Scholar
  45. Williams, CJ, Yavitt, JB, Wieder, RK, Cleavitt, NL 1998Cupric oxidation products of northern peat and peat-forming plantsCan J Bot765162CrossRefGoogle Scholar
  46. Zoltai, S 1993Cyclic development of permafrost in the peatlands of northwestern Alberta, CanadaArctic Alpine Res2524046Google Scholar
  47. Zoltai, S 1995Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years B.PGéographie physique et Quaternaire494554Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations