Advertisement

Ecosystems

, Volume 7, Issue 5, pp 513–524 | Cite as

Carbon Dioxide Exchange Between an Old-growth Forest and the Atmosphere

  • Kyaw Tha Paw UEmail author
  • Matthias Falk
  • Thomas H. Suchanek
  • Susan L. Ustin
  • Jiquan Chen
  • Young-San Park
  • William E. Winner
  • Sean C. Thomas
  • Theodore C. Hsiao
  • Roger H. Shaw
  • Thomas S. King
  • R. David Pyles
  • Matt Schroeder
  • Anthony A. Matista
Article

Abstract

Eddy-covariance and biometeorological methods show significant net annual carbon uptake in an old-growth Douglas-fir forest in southwestern Washington, USA. These results contrast with previous assumptions that old-growth forest ecosystems are in carbon equilibrium. The basis for differences between conventional biomass-based carbon sequestration estimates and the biometeorologic estimates are discussed. Annual net ecosystem exchange was comparable to younger ecosystems at the same latitude, as quantified in the AmeriFlux program. Net ecosystem carbon uptake was significantly correlated with photosynthetically active radiation and air temperature, as well as soil moisture and precipitation. Optimum ecosystem photosynthesis occurred at relatively cool temperatures (5°–10°C). Understory and soil carbon exchange always represented a source of carbon to the atmosphere, with a strong seasonal cycle in source strength. Understory and soil carbon exchange showed a Q10 temperature dependence and represented a substantial portion of the ecosystem carbon budget. The period of main carbon uptake and the period of soil and ecosystem respiration are out of phase, however, and driven by different climatic boundary conditions. The period of strongest ecosystem carbon uptake coincides with the lowest observed values of soil and ecosystem respiration. Despite the substantial contribution of soil, the overall strength of the photosynthetic sink resulted in the net annual uptake. The net uptake estimates here included two correction methods, one for advection and the other for low levels of turbulence.

Keywords

net ecosystem exchange (NEE) gross ecosystem production eddy covariance biometeorology old-growth forest carbon flux carbon dioxide Wind River Canopy Crane 

Notes

Acknowledgements

We thank Trevor Newton, Matt Schroeder, Jessica Wade-Murphy, Shane Motley, Sonia Wharton, Liyi Xu, and Drs. Dave Shaw, Xinli Wang, Bryan Weare, Richard Grotjahn, and Jerry Franklin for their help in carrying out this research, and Drs. Michael Unsworth, David Turner, Michael Ryan, Mark Harmon, and Chris Field for their comments regarding early drafts of this report. This research was supported by the Office of Science, Biological and Environmental Research Program (BER), US Department of Energy (DOE), through the Western Regional Center (WESTGEC) of the National Institute for Global Environmental Change (NIGEC) under Cooperative Agreement DE-FC03-90 ER61010. J. Wade-Murphy was supported by the US Department of Energy Global Change Education Program. The Wind River Canopy Crane Research Facility is operated under joint sponsorship of the University of Washington and the USDA Forest Service/Pacific Northwest Station, and we acknowledge both for significant support. Any opinions, findings, and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the view of the DOE.

References

  1. Anderson, DE, Farrar, CD 2001Eddy covariance measurement of CO2 flux to the atmosphere from an area of high volcanogenic emissions, Mammoth Mountain, CaliforniaChem Geol1773142CrossRefGoogle Scholar
  2. Anthoni, PM, Law, BE, Unsworth, MH 1999Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystemAgric For Meteorol9515168CrossRefGoogle Scholar
  3. Baldocchi, D, Finnigan, J, Wilson, K, Paw U, KT, Falge, E 2000On measuring net ecosystem carbon exchange over tall vegetation in complex terrainBoundary-layer Meteorol9625791CrossRefGoogle Scholar
  4. Banuri T, Barker T, Bashmakov I, Blok K, Christensen J, Davidson O, Grubb M, Halsnaes K, Jepma C, Jochem E, Kauppi P, Krankina O, Krupnick A, Kuijpers L, Kverndokk S, Markandya A, Metz B, Moomaw WR, Moreira JR, Morita T, Pan J, Price L, Richels R, Robinson J, Sathaye J, Swart R, Tanaka K, Taniguichi T, Toth F, Taylor T, Weyant J. 2001. Technical Summary. Climate Change 2001: Mitigation. A report of Working Group III of the Intergovernmental Panel on Climate Change. IPCC Secretariat, c/o World Meteorological Organization, Geneva, Switzerland p 43Google Scholar
  5. Barr, AG, Griffis, TJ, Black, TA, Lee, X, Staebler, RM, Fuentes, JD, Chen, Z, Morgenstern, K 2002Comparing the carbon budgets of boreal and temperate deciduous forest standsCan J For Res3281322CrossRefGoogle Scholar
  6. Battle, M, Bender, ML, Tans, PP, White, JWC, Ellis, JT, Conway, T, Francey, RJ 2000Global carbon sinks and their variability inferred from atmospheric O2 and δ13 CScience287246770CrossRefPubMedGoogle Scholar
  7. Birdsey, RA, Planting, AJ, Heath, LS 1993Past and prospective carbon storage in United States ForestsFor Ecol Manage583340CrossRefGoogle Scholar
  8. Black, TA, Hartog, G, Neumann, HH, Blanken, PD, Yang, PC, Russell, C, Nesic, Z, Lee, X, Chen, SG, Staebler, R, Novak, MD 1996Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forestGlobal Change Biol221929Google Scholar
  9. Carey, EV, Sala, A, Keane, R, Callaway, RM 2001Are old forests underestimated as global carbon sinks?Global Change Biol733944CrossRefGoogle Scholar
  10. Chen, J, Paw, UKT, Ustin, SL, Suchanek, TH, Wang, X, Falk, M, Brosofske, K, Bi, R, King, TS 2004Net ecosystem exchanges (NEE) of carbon, water and energy in young and old-growth Douglas fir forestsEcosystems7xxxxxxGoogle Scholar
  11. Clark, DA, Brown, S, Kicklighter, DW, Chambers, JQ, Thomlinson, JR, Ni, J 2001Measuring net primary production in forests: concepts and field methodsEcol Appl1135670Google Scholar
  12. DeBell, DS, Franklin, JS 1987Old-Growth Douglas-fir and western hemlock: a 36-year record of growth and mortalityWest J Appl For21114Google Scholar
  13. DeLucia, EH, Hamilton, JG, Naidu, SL, Thomas, RB, Andres, JA, Finzi, A, Lavigne, M, Matamala, R, Mohan, JE, Hendrey, GR, Schlesinger, WH 1999Net primary production of a forest ecosystem with experimental CO2 enrichmentScience28411779CrossRefPubMedGoogle Scholar
  14. Dugas, WA, Fritschen, LJ, Gay, LW, Held, AA, Matthias, AD, Reicosky, DC, Steduto, P, Steiner, JL 1991Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheatAgric For Meteorol56120CrossRefGoogle Scholar
  15. Ehman, JL, Schmid, HP, Grimmond, CSB, Randolph, JC, Hanson, PJ, Wayson, CA, Cropley, FD 2002An initial intercomparison of micrometeorological and ecological inventory estimates of carbon exchange in a mid-latitude deciduous forestGlobal Change Biol8575589CrossRefGoogle Scholar
  16. Falge, E, Baldocchi, D, Olson, R, Anthoni, P, Aubinet, M, Bernhofer, C, Burba, G, Clement, R, Dolman, H, Granier, A 2001Gap filling strategies for defensible annual sums of net ecosystem exchangeAgric For Meteorol1074369Google Scholar
  17. Falge, E, Baldocchi, D, Tenhunen, J, Aubinet, M, Bakwin, P, Berbigier, P, Bernhofer, C, Burba, G, Clement, R, Davis, K 2002Seasonality of ecosystem respiration and gross primary production as derived from Fluxnet measurementsAgric For Meteorol1135374CrossRefGoogle Scholar
  18. Fan, S, Gloor, M, Mahlman, J, Pacala, S, Sarmiento, J, Takahashi, T, Tans, P 1998A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and modelsScience2824426CrossRefPubMedGoogle Scholar
  19. Field, CB, Kaduk, J 2004The carbon balance of an old-growth forest: building across approachesEcosystems7.[this issue]Google Scholar
  20. Franklin, JF 1988Pacific Northwest ForestsBarbour, MGBillings, WD eds. North American terrestrial vegetationCambridge University PressNew York10431Google Scholar
  21. Franklin, JF, DeBell, DS 1988Thirty-six years of tree population change in an old-growth Pseudotsuga–Tsuga forestCan J For Res186339Google Scholar
  22. Franklin, JF, Spies, TA, Pelt, R, Carey, AB, Thornburgh, DA, Gerg, DR, Lindemayer, DB, Harmon, ME, Keeton, WS, Shaw, DC 2002Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an exampleFor Ecol Manage155399423CrossRefGoogle Scholar
  23. Goodale, CL, Apps, MJ, Birdsey, RA, Field, CB, Heath, LS, Houghton, RA, Jenkins, JC, Kohlmaier, GH, Kurz, W, Liu, SR 2002Forest carbon sinks in the Northern HemisphereEcol Appl128919Google Scholar
  24. Goulden, ML, Munger, JW, Fan, S-M, Daube, BC, Wofsy, SC 1996Exchange of carbon dioxide by a deciduous forest: response to interannual climate variabilityScience271157678Google Scholar
  25. Greco, S, Baldocchi, DD 1996Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forestGlobal Change Biol218397Google Scholar
  26. Grier, CC, Logan, RS 1977Old-growth Pseudotsuga menziesii communities of a western Oregon watershed: biomass distribution and production budgetsEcol Monogr47373400Google Scholar
  27. Harmon, ME, Bible, K, Ryan, MG, Shaw, DC, Chen, H, Klopatek, J, Li, X 2004Production, respiration, and overall carbon balance in an old-growth PseudotsugaTsuga forest ecosystemEcosystems7.[this issue]Google Scholar
  28. Harmon, ME, Ferrell, WK, Franklin, JF 1990Effects of carbon storage of conversion of old-growth forests to young forestsScience247699701Google Scholar
  29. Heath, LS, Birdsey, RA 1993Carbon trends of productive temperate forests of the coterminous United StatesWater Air Soil Pollut7027993Google Scholar
  30. Houghton, RA, Hobbie, JE, Melillo, JM, Moore, B, Peterson, BJ, Shaver, GR, Woodwell, GM 1983Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphereEcol Monogr5323562Google Scholar
  31. Janisch, JE, Harmon, ME 2002Successional changes in live and dead wood carbon stores: implications for net ecosystem productivityTree Physiol227789PubMedGoogle Scholar
  32. Janssen, IA, Kowalski, AS, Ceulemans, R 2001Forest floor CO2 fluxes estimated by eddy covariance and chamber-based modelAgric For Meteorol106619CrossRefGoogle Scholar
  33. Janssen, IA, Kowalski, AS, Longdoz, B, Ceulemans, R 2000Assessing forest soil CO2 efflux: an in situ comparison of four techniquesTree Physiol202332PubMedGoogle Scholar
  34. Keyes, MR, Grier, CC 1981Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sitesCan J For Res11599605Google Scholar
  35. Law, BE, Baldocchi, DD, Anthoni, PM 1999Below-canopy and soil CO2 fluxes in a ponderosa pine forestAgric For Meteorol9417188CrossRefGoogle Scholar
  36. Lee, X 1998On micrometeorological observations of surface-air exchange over tall vegetationAgric For Meteorol913950CrossRefGoogle Scholar
  37. Malhi, Y, Baldocchi, DD, Jarvis, PG 1999The carbon balance of tropical, temperate and boreal forestsPlant Cell Environ2271540CrossRefGoogle Scholar
  38. Mariscal, MJ, Martens, SN, Ustin, SL, Chen, J, Weiss, SB, Roberts, DA 2004Light-transmission profiles in an old-growth forest canopy: simulations of photosynthetically active radiation by using spatially explicit radiative transfer modelsEcosystems7.[this issue]Google Scholar
  39. Melillo, JM, Hall, DO, Ågren, GI 1996Executive summaryBreymeyer, AIHall, DOMelillo, JMÅgren, GI eds. Global change: effects on coniferous forests and grasslandsWileyNew York116Google Scholar
  40. Morrell, V 1994Crane experiment finally perches in Washington StateScience2641842Google Scholar
  41. Nemani, R, White, M, Thornton, P, Nishida, K, Reddy, S, Jenkins, J 2002Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United StatesGeophys Res Lett2910611064CrossRefGoogle Scholar
  42. Norman, JM, Kucharik, CJ, Gower, ST, Baldocchi, DD, Crill, PM, Rayment, M, Savage, K, Striegl, RG 1997A comparison of six methods for measuring soil-surface carbon dioxide fluxesJ Geophys Res1027717CrossRefGoogle Scholar
  43. Odum, EP 1963EcologyHoldNew York Rinehart and WinstonGoogle Scholar
  44. Odum, EP 1965Fundamentals of Ecology2ndSaundersPhiladelphiaGoogle Scholar
  45. Pacala, SW, Hurtt, GC, Baker, D, Peylin, P, Houghton, RA, Birdsey, RA, Heath, L, Sundquist, ET, Stallard, RF, Ciais, P 2001Consistent land and atmosphere based U.S. carbon sink estimatesScience292231620CrossRefPubMedGoogle Scholar
  46. Parker, GG, Harmon, ME, Lefsky, MA, Chen, J, Pelt, R, Weiss, SB, Thomas, SC, Winner, WE, Shaw, DC, Franklin, JF 2004Three-dimensional structure of an old-growth PseudotsugaTsuga forest and its implications for radiation balance, microclimate, and atmospheric gas exchangeEcosystems7.[this issue]Google Scholar
  47. Paw U, KT, Baldocchi, DD, Meyers, TP, Wilson, K 2000Correction of eddy-covariance measurements incorporating both advective effects and density fluxesBoundary-layer Meteorol97487511CrossRefGoogle Scholar
  48. Phillips, N, Bond, BJ, McDowell, NG, Ryan, MG 2002Canopy and hydraulic conductance in young, mature and old Douglas-fir treesTree Physiol2220511PubMedGoogle Scholar
  49. Pilegaard, K, Hummelshoj, P, Jensen, NO, Chen, Z 2001Two years of continuous CO2 eddy-flux measurements over a Danish beech forestAgric For Meteorol1072941CrossRefGoogle Scholar
  50. Post, WM, Izaurralde, RC, Mann, LK, Bliss, N 1999Monitoring and verifying soil organic carbon sequestrationRosenberg, NJIzaurralde, RCMalone, EM eds. Carbon sequestration in soilsBattelleColumbus (OH)4166Google Scholar
  51. Pyles, RD, Weare, BC, Paw U, KT 2000The UCD advanced-canopy–atmosphere–soil algorithm (ACASA): comparisons with observations from different climate and vegetation regimesQ J R Meteorol Soc126295180CrossRefGoogle Scholar
  52. Ruimy, A, Jarvis, PG, Baldocchi, DD, Saugier, B 1995CO2 fluxes over plant canopies and solar radiation: a reviewAdv Ecol Res26168Google Scholar
  53. Santantonio, D, Hermann, RK 1985Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western OregonAnn Sci For4211342Google Scholar
  54. Santantonio, D, Hermann, RK, Overton, WS 1977Root biomass studies in forest ecosystemsPedobiologia17131Google Scholar
  55. Schimel, DS 1995Terrestrial ecosystems and the carbon cycleGlobal Change Biol17791Google Scholar
  56. Schimel, D, Alves, D, Enting, I, Heimann, M, Joos, F, Raynaud, D, Wigley, T, Prather, M, Derwent, R, Ehhalt, D 1996Radiative forcing of climate changeHoughton, JTMeira Filho, LGCalendar, BAHarris, NKattenberg, AMaskell, K eds. Climate change 1995: the science of climate changeCambridge University PressCambridge65132Google Scholar
  57. Schimel, DS, Melillo, J, Tian, H, McGuire, AD, Kicklighter, D, Kittel, T, Rosenbloom, N, Running, S, Thornton, P, Ojima, D 2000Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United StatesScience28720046CrossRefPubMedGoogle Scholar
  58. Schmid, HP, Grimmond, CSB, Cropley, F, Offerle, B, Su, H-B 2000Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United StatesAgric For Meteorol10335774CrossRefGoogle Scholar
  59. Schulze, E-D, Lloyd, J, Kelliher, FM, Wirth, C, Rebmann, C, Luhker, B, Mund, M, Knohl, A, Milyuokova, IM, Schulze, W 1999Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink: a synthesisGlobal Change Biol570322CrossRefGoogle Scholar
  60. Shaw, DC, Franklin, JF, Klopatek, J, Freeman, E, Bible, K, Newton, T, Greene, S, Wade-Murphy, J 2004Ecological setting of the Wind River old-growth forestEcosystems7.[this issue]Google Scholar
  61. Spies TA, Franklin JF. 1991. The structure of natural young, mature, and old-growth Douglas-fir forests in Oregon and Washington. In: Ruggiero LF, Aubry KB, Carey AB, Huff MH, technical coordinators. Wildlife and vegetation in unmanaged Douglas-fir forests. General Technical Report PNW-6TR-285. Portland (OR): USDA Forest Service, Pacific Northwest Research Station. p 91–109Google Scholar
  62. Steele, SJ, Gower, ST, Vogel, JG, Norman, JM 1997Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, CanadaTree Physiol1757787PubMedGoogle Scholar
  63. Thom, AS 1975Momentum, mass and heat exchange of plant communitiesMonteith, JL eds. Vegetation and the atmosphere. Volume 1. PrinciplesAcademicNew York57109Google Scholar
  64. Turner, DP, Cohen, WB, Kennedy, RE 2000Alternative spatial resolutions and estimation of carbon flux over a managed forest landscape in western OregonLandscape Ecol1544152CrossRefGoogle Scholar
  65. Turner, DP, Koerper, GJ, Harmon, ME, Lee, JJ 1995Carbon sequestration by forests of the United States: current status and projections to the year 2040Tellus [B]472329CrossRefGoogle Scholar
  66. Unsworth, MH, Phillips, N, Link, T, Bond, BJ, Falk, M, Harmon, ME, Hinckley, TM, Marks, D, Paw U, KT 2004Components and controls of water flux in an old-growth Douglas-fir–western hemlock ecosystemEcosystems..[this issue]Google Scholar
  67. Valentini, R, Matteucci, G, Dolman, AJ, Schulze, E-D, Rebmann, C, Moors, EJ, Granier, A, Gross, P, Jensen, NO, Pilegaard, K 2000Respiration as the main determinant of carbon balance in European forestsNature4048615CrossRefPubMedGoogle Scholar
  68. Webb, EK, Pearman, GI, Leuning, R 1980Correction of flux measurements for density effects due to heat and water vapour transferQ J R Meteorol Soc10685100CrossRefGoogle Scholar
  69. Wilson, JD, Swaters, GE 1991The source area influencing a measurement in the planetary boundary layer: the “footprint” and the “distribution of contact distance.”Boundary-layer Meteorol552546Google Scholar
  70. Winner, WE, Thomas, SC, Berry, JA, Bond, BJ, Cooper, CE, Hinckley, TM, Ehleringer, JR, Fessenden, JE, Lamb, B, McCarthy, S 2004Canopy carbon gain and water use: analysis of old-growth conifers in the Pacific NorthwestEcosystems72334[this issue]Google Scholar
  71. Wofsy, SC, Goulden, ML, Munger, JW, Fan, S-M, Bakwin, PS, Daube, BC, Bassow, SL, Bazzaz, FA 1993Net exchange of CO2 in a mid-latitude forestScience26013147Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Kyaw Tha Paw U
    • 1
    Email author
  • Matthias Falk
    • 1
  • Thomas H. Suchanek
    • 2
  • Susan L. Ustin
    • 1
    • 3
  • Jiquan Chen
    • 4
  • Young-San Park
    • 1
  • William E. Winner
    • 5
  • Sean C. Thomas
    • 6
  • Theodore C. Hsiao
    • 1
  • Roger H. Shaw
    • 1
  • Thomas S. King
    • 1
    • 7
  • R. David Pyles
    • 1
  • Matt Schroeder
    • 1
  • Anthony A. Matista
    • 1
  1. 1.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA
  2. 2.Department of Environmental Contaminants–W-2605US Fish and Wildlife ServiceSacramentoUSA
  3. 3.Western Regional Center: National Institute for Global Environmental ChangeUniversity of CaliforniaDavisUSA
  4. 4.School of Landscape Ecology and Ecosystem Science (LEES), Earth, Ecological and Environmental Sciences (EEES), Bowman-Oddy LaboratoriesUniversity of ToledoToledoUSA
  5. 5.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  6. 6.Faculty of ForestryUniversity of TorontoOntarioCanada
  7. 7.College of Forest ResourcesUniversity of WashingtonSeattleUSA

Personalised recommendations