Advertisement

Ecosystems

, Volume 7, Issue 5, pp 482–497 | Cite as

Canopy Carbon Gain and Water Use: Analysis of Old-growth Conifers in the Pacific Northwest

  • William E. WinnerEmail author
  • Sean C. Thomas
  • Joseph A. Berry
  • Barbara J. Bond
  • Clifton E. Cooper
  • Thomas M. Hinckley
  • James R. Ehleringer
  • Julianna E. Fessenden
  • Brian Lamb
  • Sarah McCarthy
  • Nate G. McDowell
  • Nathan Phillips
  • Mathew Williams
Article

Abstract

This report summarizes our current knowledge of leaf-level physiological processes that regulate carbon gain and water loss of the dominant tree species in an old-growth forest at the Wind River Canopy Crane Research Facility. Analysis includes measurements of photosynthesis, respiration, stomatal conductance, water potential, stable carbon isotope values, and biogenic hydrocarbon emissions from Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), and western red cedar (Thuja plicata). Leaf-level information is used to scale fluxes up to the canopy to estimate gross primary production using a physiology-based process model. Both light-saturated and in situ photosynthesis exhibit pronounced vertical gradients through the canopy, but are consistently highest in Douglas-fir, intermediate in western hemlock, and lowest in western red cedar. Net photosynthesis and stomatal conductance are strongly dependent on vapor-pressure deficit in Douglas-fir, and decline through the course of a seasonal drought. Foliar respiration is similar for Douglas-fir and western hemlock, and lowest for western red cedar. Water-use efficiency varied with species and tree height, as indexed using stable carbon isotopes values for foliage. Leaf water potential is most negative for Douglas-fir and similar for western hemlock and western red cedar. Terpene fluxes from foliage equal approximately 1% of the net carbon loss from the forest. Modeled estimates based on physiological measurements show gross primary productivity (GPP) to be about 22 Mg C m−2 y−1. Physiological studies will be necessary to further refine estimates of stand-level carbon balance and to make long-term predictions of changes in carbon balance due to changes in forest structure, species composition, and climate.

Keywords

biogenic carbon emissions canopy processes forest carbon budget forest gas exchange old-growth canopy 

Notes

Acknowledgements

This research was supported by the Office of Science, Biological and Environmental Research Program (BER), US Department of Energy (DOE), through the Western Regional Center (WESTGEC) of the National Institute for Global Environmental Change (NIGEC) under Cooperative Agreement DE-FC03-90ER61010. Authors who are investigators with WESTGEC funds to work at the site include W. E. Winner, J. Berry, B. J. Bond, T. Hinckley, J. Ehleringer, B. Lamb, and S. C. Thomas. Dr. Thomas Suchanek, WESTGEC Director, along with Dr. Susan Ustin and the WESTGEC staff, have helped create the focused interest in analysis of carbon balance at this site. We also greatly appreciate the efforts of Dr. David Shaw, Director of the Wind River canopy crane site, who has provided assistance in organizing research and providing logistical support at the site. We are particularly indebted to Mr. Mark Creighton, and those who “bell” the crane, for safely moving us through the forest canopy with the precision and care necessary to gather physiological data in the forest canopy without damaging trees.

References

  1. Aber, JD, Federer, C 1992A generalized, lumped-parameter model of photosynthesis, evaporation and net primary production in temperate and boreal forest ecosystemsOecologia (Berl)9246374Google Scholar
  2. Aber, JD, Reich, PB, Goulden, ML 1996Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlationOecologia (Berl)10625765Google Scholar
  3. Arey, J, Winer, AM, Atkinson, R, Aschmann, SM, Long, WD, Morrison, CL, Olszyk, DM 1991Terpenes emitted from agricultural species found in California’s central valleyJ Geophys Res96932936Google Scholar
  4. Bazzaz, FA 1979The physiological ecology of plant successionAnnu Rev Ecol Syst1035171CrossRefGoogle Scholar
  5. Black, TA, Hartog, G, Neumann, HH, Blanken, PD, Yang, PC, Russell, C, Nesic, Z, Lee, X, Chen, SG, Staebler, R, Novak, MD 1996Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forestGlobal Change Biol221929Google Scholar
  6. Bond, BJ, Farnsworth, BT, Coulombe, RA, Winner, WE 1999Foliage physiology and biochemistry in response to light gradients in conifers with varying shade toleranceOecologia (Berl)12018392CrossRefGoogle Scholar
  7. Bond, BJ, Kavanagh, KL 1999Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potentialTree Physiol1950310PubMedGoogle Scholar
  8. Buchmann, N, Brooks, JR, Flanagan, LB, Ehleringer, JR 1998aCarbon isotope discrimination of terrestrial ecosystemsGriffiths, H, eds. Stable isotopes: integration of biological, ecological, and geochemical processesBIOS ScientificOxford20321Google Scholar
  9. Buchmann, N, Hinckley, TM, Ehleringer, JR 1998bCarbon isotope dynamics in Abies amabilis stands in the CascadesCan J For Res2880819CrossRefGoogle Scholar
  10. Buchmann, N, Kao, W, Ehleringer, JR 1997Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests of Utah, United StatesOecologia (Berl)11010919CrossRefGoogle Scholar
  11. Chen, JQ, Falk, M, Euskirchen, E, Paw U, KT, Suchanek, TH, Ustin, SL, Bond, BJ, Brosofske, KD, Phillips, N, Bi, RC 2002Biophysical controls of carbon flows in three successional Douglas-fir stands based on eddy-covariance measurementsTree Physiol2216977PubMedGoogle Scholar
  12. Constable, JVH, Litvak, ME, Greenberg, JP, Monson, RK 1999Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warmingGlobal Change Biol525567CrossRefGoogle Scholar
  13. Croteau, R 1987Biosynthesis and catabolism of monoterpenoidsChem Rev8792954Google Scholar
  14. Ehleringer, JRHall, AFarquhar, GD eds. 1993Stable isotopes and plant carbon/water relationsAcademicSan DiegoGoogle Scholar
  15. Farquhar, GD, Ehleringer, JR, Hubick, KT 1989Carbon isotope discrimination and photosynthesisAnnu Rev Plant Physiol Mol Biol4050337CrossRefGoogle Scholar
  16. Farquhar, GD, Caemmerer, S 1982Modelling of photosynthetic response to the environmentEncycl Plant Physiol [B]1254987Google Scholar
  17. Fehsenfeld, F, Calvert, J, Fall, R, Goldan, P, Guenther, A, Hewitt, CN, Lamb, B, Liu, S, Trainer, M, Westberg, H, Zimmerman, P 1992Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistryGlobal Biogeochem Cycles6389430Google Scholar
  18. Fessenden, JE, Ehleringer, JR 2002Age-related variations in delta C-13 of ecosystem respiration across a coniferous forest chronosequence in the Pacific NorthwestTree Physiol2215967PubMedGoogle Scholar
  19. Flanagan, LB, Brooks, JR, Varney, GT, Berry, SC, Ehleringer, JR 1996Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal ecosystemsGlobal Biogeochem Cycles1062940CrossRefGoogle Scholar
  20. Greco, S, Baldocchi, DD 1996Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forestGlobal Change Biol218397Google Scholar
  21. Guenther, A, Geron, C, Pierce, T, Lamb, B, Harley, P, Fall, R 1999Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North AmericaAtmos Environ..Google Scholar
  22. Guenther, A, Hewitt, CN, Erickson, D, Fall, R, Geron, C, Graedel, T, Harley, P, Klinger, L, Lerdau, M, McKay, WA 1995A global model of natural volatile organic compound emissionsJ Geophys Res1418397othersGoogle Scholar
  23. Guenther, A, Zimmerman, P, Harley, P, Monson, R, Fall, R 1993Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysesJ Geophys Res1260912Google Scholar
  24. Harmon, ME, Bible, K, Ryan, MG, Shaw, DC, Chen, H, Klopatek, J, Li, X 2004Production, respiration, and overall carbon balance in an old-growth PseudotsugaTsuga forest ecosystemEcosystems..7 [this issue]Google Scholar
  25. Hinckley, TM, Lassoie, JP, Running, SW 1978Temporal and spatial variations in the water status of forest treesFor Sci Monogr20172Google Scholar
  26. Hollinger, DY, Kelliher, FM, Byers, JN, Hunt, JE, McSeveny, TM, Weir, PL 1994Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphereEcology7513450Google Scholar
  27. Hunt, JE, McSeveny, TM, Weir, PL 1994Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphereEcology7513450Google Scholar
  28. Jacob, DJ, Wofsy, SC 1988Photochemistry of biogenic emissions over the Amazon forestJ Geophys Res93147786Google Scholar
  29. Jarvis, PG 1993Prospects for bottom–up modelsEhleringer, JRField, CB eds. Scaling physiological processes: leaf to globeAcademicSan DiegoGoogle Scholar
  30. Juuti, S, Arey, J, Atkinson, R 1990Monoterpene emission rate measurements from a Monterey pineJ Geophys Res9575159Google Scholar
  31. Klinger, LF, Greenberg, J, Guenther, A, Tyndall, G, Zimmerman, P, M‘Bangi, M, Moutsambotá, J-M, Kenfack, D 1998Patterns in volatile organic compound emissions along a savanna–rainforest gradient in central AfricaJ Geophys Res103144354CrossRefGoogle Scholar
  32. Law, B, Williams, M, Anthoni, PM, Baldocchi, DD, Unsworth, MH 2000Measuring and modeling seasonal variation of carbon dioxide and water vapor exchange of a Pinus ponderosa forest subject to soil water deficitGlobal Change Biol661330CrossRefGoogle Scholar
  33. Lerdau, M, Matson, P, Fall, R, Monson, R 1995Ecological controls over monoterpene emissions from Douglas-fir (Pseudotsuga Menziesii)Ecology7626407Google Scholar
  34. Lewis, JD, McKane, RB, Tingey, DT, Beedlow, PA 2000Vertical gradients in photosynthetic light response within an old-growth Douglas-fir and western hemlock canopyTree Physiol2044756PubMedGoogle Scholar
  35. Lin, G, Ehleringer, JR 1997Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plantsPlant Physiol1143914PubMedGoogle Scholar
  36. Litvak, M 1997Environmental and biotic controls over the production and emission of nonmethane hydrocarbons from trees [PhD thesis]University of ColoradoBoulderGoogle Scholar
  37. Marshall, JD, Zhang, J 1994Carbon isotope discrimination and water-use efficiency in native plants of the north-central RockiesEcology75188795Google Scholar
  38. Martin, PH, Guenther, AB 1995Insights into the dynamics of forest succession and non-methane hydrocarbon trace gas emissionsJ Biogeogr224939Google Scholar
  39. McDowell, NG, Phillips, N, Lunch, C, Bond, BJ, Ryan, MG 2002An investigation of hydraulic limitation and compensation in large, old Douglas-fir treesTree Physiol2276374PubMedGoogle Scholar
  40. Medina, E, Minchin, P 1980Stratification of δ13C values of leaves in Amazonian rainforestsOecologia (Berl)4535578Google Scholar
  41. Ögren, E, Evans, JR 1993Photosynthetic light-response curves. I. The influence of CO2 partial pressure and leaf inversionPlanta (Berl)18918290Google Scholar
  42. Parker, GG, Harmon, ME, Lefsky, MA, Chen, J, Pelt, R, Weiss, SB, Thomas, SC, Winner, WE, Shaw, DC, Franklin, JF 2004Three-dimensional structure of an old-growth PseudotsugaTsuga canopy and its implications for radiation balance, microclimate, and atmospheric gas exchangeEcosystems7 [this issue].Google Scholar
  43. Paulson, SE, Flagan, RC, Seinfeld, JH 1992Atmospheric photooxidation of isoprenePart l: The reactions of isoprene with hydroxyl radical and ground state atomic oxygen. Int J Chem Kinet2479101Google Scholar
  44. Paw U, KT, Falk, M, Suchanek, TH, Ustin, SL, Chen, J, Park, Y-S, Winner, WE, Thomas, SC, Hsiao, TC, Shaw, RH 2004Carbon dioxide exchange between an old-growth forest and the atmosphereEcosystems7.[this issue] othersGoogle Scholar
  45. Phillips, N, Bond, BJ, McDowell, NG, Ryan, MG 2002Canopy and hydraulic conductance in young, mature and old Douglas-fir treesTree Physiol2220511PubMedGoogle Scholar
  46. Pressley S, Lamb B, Westberg H, Claiborn C. In review. Monoterpene emissions from a Pacific Northwest old growth forest. In: American Geophysical Union Fall Meeting, EOS, TransactionsGoogle Scholar
  47. Pressley, S, Lamb, B, Westberg, H, Guenther, A .Monoterpene emissions from a Pacific Northwest old growth forestTree Physiol. ..In pressGoogle Scholar
  48. Rasmussen, RA, Khalil, MAK 1988Isoprene over the Amazon basinJ Geophys Res93141721Google Scholar
  49. Running, SW 1976Environmental control of leaf water conductance in conifersCan J For Res610412Google Scholar
  50. Running, SW, Coughlan, JC 1988A general model of forest ecosystem processes of regional applications. I. Hydrologic balance, canopy gas exchange and primary production processesEcol Modell4212554CrossRefGoogle Scholar
  51. Running, SW, Gower, ST 1991A general model of forest ecosystem processes for regional applications. II. Nitrogen budgets and carbon partitioningTree Physiol914760PubMedGoogle Scholar
  52. Ryan, MJ, Yoder, BJ 1997Hydraulic limits to tree height and tree growthBioscience4723542Google Scholar
  53. Saxton, KE, Rawls, WJ, Romberger, JS, Papendick, RI 1986Estimating generalized soil-water characteristics from textureJ Soil Sci Soc Am9010316Google Scholar
  54. Sharkey, TD, Loreto, F, Delwiche, DF 1991aThe biochemistry of isoprene emission from leaves during photosynthesisSharkey, TDHolland, EAMooney, HA eds. Trace gas emissions from plantsAcademicSan Diego.Google Scholar
  55. Sharkey, TD, Loreto, F, Delwiche, DF 1991bHigh carbon dioxide and sunshade effects on isoprene emissions from oak and aspen tree leavesPlant Cell Environ143338Google Scholar
  56. Talbot, RW, Beecher, KM, Harriss, RC, Cofer, WR 1988Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate siteJ Geophys Res93163852Google Scholar
  57. Thomas, SC, Winner, WE 2000Leaf area index of an old-growth Douglas-fir forest estimated from direct structural measurements in the canopyCan J For Res30192230CrossRefGoogle Scholar
  58. Thomas, SC, Winner, WE 2002Photosynthetic differences between saplings and adult trees: an integration of field results via meta-analysisTree Physiol2211727PubMedGoogle Scholar
  59. Unsworth, MH, Phillips, N, Link, T, Bond, BJ, Falk, M, Harmon, ME, Hinckley, TM, Marks, D, Paw U, KT 2004Components and controls of water flux in an old-growth Douglas-fir–western hemlock ecosystemEcosystems.7[this issue]Google Scholar
  60. Valentini, R, Angelis, P, Matteucci, G, Monaco, R, Dore, S, Scarascia Mugnozza, GE 1996Seasonal net carbon dioxide exchange of a beech forest with the atmosphereGlobal Change Biol2199207Google Scholar
  61. Westberg, H, Zimmerman, P 1993Analytical methods used to identify nonmethane organic compounds in ambient atmospheresNewman, L eds. Measurement challenges in atmospheric chemistryAmerican Chemical SocietyWashington (DC).[Advances in Chemistry Series 232]Google Scholar
  62. Williams, M, Eugster, W, Rastetter, EB, McFadden, JP, Chapin, FS 2000The controls on net ecosystem productivity along an arctic transect: a model comparison with flux measurementsGlobal Change Biol611626CrossRefGoogle Scholar
  63. Williams, M, Malhi, Y, Nobre, A, Rastetter, EB, Grace, J, Pereira, MGP 1998Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysisPlant Cell Environ2195368CrossRefGoogle Scholar
  64. Williams, M, Rastetter, EB, Fernandes, DN, Goulden, ML, Wofsy, SC, Shaver, GR, Melillo, JM, Munger, JW, Fan, S-M, Nadelhoffer, KJ 1996Modelling the soil–plant–atmosphere continuum in a Quercus–Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic propertiesPlant Cell Environ1991127Google Scholar
  65. Wofsy, SC, Goulden, ML, Munger, JW, Fan, SM, Bakwin, PS, Daube, BC, Bassow, SL, Bazzaz, FA 1993Net exchange of CO2 in a mid-latitude forestScience26013147Google Scholar
  66. Zhang, JW, Marshall, JD, Jaquish, BC 1993Genetic differentiation in carbon isotope discrimination and gas exchange in Pseudotsuga menziesii: a common-garden experimentOecologia (Berl)93807Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • William E. Winner
    • 1
    Email author
  • Sean C. Thomas
    • 2
  • Joseph A. Berry
    • 3
  • Barbara J. Bond
    • 4
  • Clifton E. Cooper
    • 1
  • Thomas M. Hinckley
    • 5
  • James R. Ehleringer
    • 6
  • Julianna E. Fessenden
    • 6
  • Brian Lamb
    • 7
  • Sarah McCarthy
    • 5
  • Nate G. McDowell
    • 4
  • Nathan Phillips
    • 4
  • Mathew Williams
    • 8
  1. 1.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  2. 2.Faculty of ForestryUniversity of TorontoTorontoCanada
  3. 3.Department of Plant BiologyCarnegie Institute of Plant BiologyStanfordUSA
  4. 4.Forest Science DepartmentOregon State UniversityCorvallisUSA
  5. 5.College of Forest ResourcesUniversity of WashingtonSeattleUSA
  6. 6.Biology DepartmentUniversity of UtahSalt Lake CityUSA
  7. 7.Department of Civil and Environmental EngineeringWashington State UniversityPullmanUSA
  8. 8.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA

Personalised recommendations