Advertisement

Ecosystems

, Volume 7, Issue 7, pp 729–739 | Cite as

Soil Organic Carbon and Water Retention after Conversion of Grasslands to Pine Plantations in the Ecuadorian Andes

  • Kathleen A. FarleyEmail author
  • Eugene F. Kelly
  • Robert G. M. Hofstede
Article

Abstract

Tree plantations in the high elevations of the tropics constitute a growing land use, but their effect on ecosystem processes and services is not well known. We examined changes in soil organic carbon (C) and water retention in a chronosequence of Pinus radiata stands planted in páramo grasslands in Cotopaxi province, Ecuador. Water retention at 10, 33, and 1,500 kPa declined with stand age, with soils in the oldest pine stands retaining 39%, 55%, and 63% less water than grassland soils at the three pressures tested. Soil organic C in the 0–10-cm depth also declined with stand age, from 5.0 kg m−2 in grasslands to 3.5 kg m−2 in 20–25-year-old pine stands (P < 0.001); at greater depth in the A horizon, C contents decreased from 2.8 to 1.2 kg m−2 (P = 0.047). There were no significant differences among age classes in the AC and C horizons (P = 0.15 and P = 0.34, respectively), where little or no weathering of the primary material has occurred. Inputs of C may be affected by the significantly higher carbon–nitrogen (C:N) ratio of the litter under older pine stands (P = 0.005), whereas outputs are influenced by substrate quality as well as soil environmental factors. Soil ratios at the 0–10 cm depth were significantly higher in grasslands and young pine stands (P < 0.001), whereas carbon–phosphorous (C:P) ratios at 0–10-cm depth followed a similar but not significant trend. However, there was no significant difference in short-term decomposition rates (P = 0.60) when the soils were incubated under uniform temperature and moisture conditions. In páramo ecosystems, where high soil moisture plays an important role in retarding decomposition and driving high C storage, the loss of water retention after afforestation may be the dominant factor in C loss. These results suggest that soil C buildup and water retention respond rapidly to changes in biota and need to be assessed with regard to implications for C sequestration and watershed management.

Keywords

soil organic carbon soil water retention land-use change afforestation pine plantation Pinus páramo Andes ecosystem services 

Notes

Acknowledgements

We thank Juan Pablo Fontecilla and Aglomerados Cotopaxi, S.A., for access to the plantation and assistance in carrying out the study. We thank Mike Ryan for conducting the laboratory incubations and breg Butters for help with water retention analysis. Thanks to Tom Veblen and balo Medina for support throughout the project. We appreciate the effort of two anonymous reviewers who helped to improve this manuscript. This material is based on work supported by the National Science Foundation under grant no. 0002352, the University of Colorado Graduate School, the University of Colorado Developing Areas Research and Training Program, and the Colorado State University Agricultural Experimental Station.

References

  1. Alban, DH 1982Effects of nutrient accumulation by aspen, spruce, and pine on soil propertiesSoil Sci Soc Am J4685360CrossRefGoogle Scholar
  2. Barberi, F, Coltelli, M, Frullani, A, Rosi, M, Almeida, E 1995Chronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecastingJ Volcanol Geotherm Res6921739CrossRefGoogle Scholar
  3. Bashkin, MA, Binkley, D 1998Changes in soil carbon following afforestation in HawaiiEcology7982833Google Scholar
  4. Bosch, JM, Hewlett, JD 1982A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspirationJ Hydrol55323CrossRefGoogle Scholar
  5. Brown, S, Lugo, AE, Chapman, J 1986Biomass of tropical tree plantations and its implications for the global carbon budgetCan J For Res1639094Google Scholar
  6. Chadwick, OA, Kelly, EF, Merritts, DM, Amundson, RG 1994Carbon dioxide consumption during soil developmentBiogeochemistry2411527CrossRefGoogle Scholar
  7. Chapela, IH, Osher, LJ, Horton, TR, Henn, MR 2001Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletionSoil Biol Biochem331733740CrossRefGoogle Scholar
  8. Christensen, NL, Bartuska, AM, Brown, JH, Carpenter, S, D’Antonio, C, Francis, R, Franklin, JF 1996The report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem ManagementEcol Appl666591othersGoogle Scholar
  9. Cortés, A, Chamorro, C, Vega, A 1990Cambios en el suelo por la implantación de praderas, coniferas y eucaliptos en un área aledaña al Embalse del Neusa (Páramo de Guerrero)Investigaciones Subdirección Agrológica, IGAC10114Google Scholar
  10. Cuevas, E, Brown, S, Lugo, AE 1991Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forestPlant Soil13525768Google Scholar
  11. Dahlgren, R, Shoji, S, Nanzyo, M 1993Mineralogical characteristics of volcanic ash soilsShoji, SNanzyo, MDahlgren, RA eds. Volcanic ash soils: genesis, properties, and utilizationElsevierAmsterdam10143Google Scholar
  12. Duncan, MJ 1995Hydrological impacts of converting pasture and gorse to pine plantation, and forest harvesting, Nelson, New ZealandJ Hydrol341541Google Scholar
  13. Dye, PJ 1996Climate, forest and streamflow relationships in South African afforested catchmentsCommonwealth For Rev753138Google Scholar
  14. Fahey, BD, Watson, AJ 1991Hydrological impacts of converting tussock grassland to pine plantation, Otago, New ZealandJ Hydrol N Z30115Google Scholar
  15. Guo, LB, Gifford, RM 2002Soil carbon stocks and land use change: a meta analysisGlobal Change Biol834560CrossRefGoogle Scholar
  16. Hamilton, CD 1965Changes in the soil under Pinus radiata Aust For2927589Google Scholar
  17. Hofstede, R 1995The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslandsPlant Soil17311132Google Scholar
  18. Hofstede, R 1999El páramo como espacio para la fijación de carbono atmosféricoMedina, GMena, P eds. El páramo como espacio de mitigación de carbono atmosféricoQuitoQuito: Grupo de Trabajo en Páramos/Abya-Yala36Google Scholar
  19. Hofstede, RGM, Groenendijk, JP, Coppus, R, Fehse, JC, Sevink, J 2002Impact of pine plantations on soils and vegetation in the Ecuadorian high AndesMountain Res Develop2215967Google Scholar
  20. [INAMHI] Instituto Nacional de Meteorología e Hidrología. 2001. Series de datos meteorológicos: Cotopaxi–Minitrak, 1930–1999. Quito: INAMHIGoogle Scholar
  21. Jackson, RB, Schenk, HJ, Jobbáby, EG, Canadell, J, Colello, GD, Dickinson, RE, Field, CB 2000Belowground consequences of vegetation change and their treatment in modelsEcol Appl1047083othersGoogle Scholar
  22. Jackson, RB, Banner, JL, Jobbágy, EG, Pockman, WT, Walls, DH 2002Ecosystem carbon loss with woody plant invasion of grasslandsNature41862326CrossRefPubMedGoogle Scholar
  23. Jenny, H 1941Factors of soil formation: a system of quantitative pedologyMcGraw-HillNew York281Google Scholar
  24. Johnson, DW 1992Effects of forest management on soil carbon storageWater Air and Soil Pollut6483120Google Scholar
  25. Joshi, M, Bargali, K, Bargali, SS 1997Changes in physico-chemical properties and metabolic activity of soil in poplar plantations replacing natural broad-leaved forests in Kumaun HimalayaJ Arid Environ3516169Google Scholar
  26. Jug, A, Makeschin, F, Rehfuess, KE, Hofmann-Schielle, C 1999Short-rotation plantations of balsam poplars, aspen, and willows on former arable land in the Federal Republic of Germany. IIISoil ecological effects. For Ecol Manage1218599CrossRefGoogle Scholar
  27. Kaye, JP, Resh, SC, Kaye, MW, Chimner, RA 2000Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia treesEcology813267273Google Scholar
  28. Kelly, RH, Burke, IC, Lauenroth, WK 1996Soil organic matter and nutrient availability responses to reduced plant inputs in shortgrass steppeEcology772516527Google Scholar
  29. Le Maitre, DC, Wilgen, BW, Chapman, RA, McKelly, DH 1996Invasive plants and water resources in the Western Cape Province, South Africa: modelling the consequences of a lack of managementJ Appl Ecol3316172Google Scholar
  30. Lips, J 1998Geografía de la sierra andina ecuatorianaHofstede, RLips, JJongsma, WSevink, Y eds. Geografía, ecología y forestación de la Sierra alta del Ecuador: revisión de literaturaAbya-YalaAbya-Yala1334Google Scholar
  31. Lips, J, Hofstede, R 1998Impactos ecológicos de plantaciones forestalesHofstede, RLips, JJongsma, WSevink, Y eds. Geografía, ecología y forestación de la Sierra alta del Ecuador: revisión de literaturaAbya-YalaAbya-Yala11726Google Scholar
  32. Lundgren, B 1978Soil conditions and nutrient cycling under natural forests and forest plantations in Tanzania highlandsDepartament of Forest Soils, Swedish University of Agricultural SciencesUppsalaGoogle Scholar
  33. Luteyn, JL 1992Páramos: why study them?Balslev, HLuteyn, JL eds. Páramo: an Andean ecosystem under human influenceAcademic PressLondon115Google Scholar
  34. Nanzyo, M, Shoji, S, Dahlgren, R 1993Physical characteristics of volcanic ash soilsShoji, SNanzyo, MDahlgren, RA eds. Volcanic ash soils: genesis, properties, and utilizationElsevierAmsterdam189207Google Scholar
  35. Ohta, S 1990Initial soil changes associated with afforestation with Acacia auriculiformis and Pinus kesiya on denuded grasslands of the Pantabangan area, Central Luzon, the PhilippinesSoil Sci Plant Nutr3663343Google Scholar
  36. Pauker, SJ, Seastedt, TR 1996Effects of mobile tree islands on soil carbon storage in tundra ecosystemsEcology77256367Google Scholar
  37. Paul, KI, Polglase, PJ, Nyakuengama, JG, Khanna, PK 2002Change in soil carbon following afforestationFor Ecol Manage16824157CrossRefGoogle Scholar
  38. Podwojewski, P 1999Los suelos de las altas tierras andinas: los páramos del EcuadorBol Soc Ecuator Cie Suelo18914Google Scholar
  39. Podwojewski, P, Poulenard, J 2000La degradación de los suelos de los páramosMena, PAJosse, CMedina, G eds. Los suelos del páramoGrupo de Trabajo en Páramos/Abya-YalaQuito2736Google Scholar
  40. Poulenard, J, Podwojewski, P, Jeanneau, JL, Collinet, J 2001Runoff and soil erosion under rainfall simulation of Andisols from the Ecuadorian páramo: effects of tillage and burningCatena45185207CrossRefGoogle Scholar
  41. Quideau, SA, Chadwick, OA, Trumbore, SE, Johnson-Maynard, JL, Graham, RC, Anderson, MA 2001Vegetation control on soil organic matter dynamicsOrg Geochem3224752CrossRefGoogle Scholar
  42. Resh, SC, Binkley, D, Parrotta, JA 2002Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus speciesEcosystems521731CrossRefGoogle Scholar
  43. Richter, DD, Markewitz, D, Wells, CG, Allen, HL, April, R, Heine, PR, Urrego, B 1994Soil chemical change during three decades in an old-field loblolly pine (Pinus taeda L.) ecosystemEcology75146373Google Scholar
  44. Schlesinger, WH 1997Biogeochemistry: an analysis of global change2ndAcademic PressSan Diegop. 588Google Scholar
  45. Schuur, EAG, Chadwick, OA, Matson, PA 2001Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forestsEcology82318296Google Scholar
  46. Scott, NA, Tate, KR, Ford-Robertson, J, Giltrap, DJ, Tattersall Smith, C 1999Soil carbon storage in plantation forests and pastures: land use change implicationsTellus5132635CrossRefGoogle Scholar
  47. Smith J, Scherr SJ. 2002. Forest carbon and local livelihoods: assessment of opportunities and policy recommendations. CIFOR occasional paper no. 37. Jakarta (Indonesia): Center for International Forestry Research. 45 pGoogle Scholar
  48. Swift, RS 2001Sequestration of carbon by soilSoil Sci16685871CrossRefGoogle Scholar
  49. Torn, MS, Trumbore, SE, Chadwick, OA, Vitousek, PM, Hendricks, DM 1997Mineral control of soil organic carbon storage and turnoverNature38917073CrossRefGoogle Scholar
  50. Turner, J, Kelly, J 1985Effect of radiata pine on soil chemical characteristicsFor Ecol Manage1125770CrossRefGoogle Scholar
  51. Turner, J, Lambert, MJ 1988Soil properties as affected by Pinus radiata plantationsN Z J For Sci187791Google Scholar
  52. Wada, K 1985The distinctive properties of AndosolsAdv Soil Sci2174223Google Scholar
  53. Wada, K 1989Allophane and imogoliteDixon, JBWeed, SB eds. Minerals in soil environmentsSoil Science Society of AmericaMadison (WI)105187Google Scholar
  54. Zar, JH 1999Biostatistical analysis4thPrentice HallUpper Saddle River NJ663Google Scholar
  55. Zinn, YL, Resck, DVS, da Silva, JE 2002Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of BrazilFor Ecol Manage166285294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Kathleen A. Farley
    • 1
    Email author
  • Eugene F. Kelly
    • 2
  • Robert G. M. Hofstede
    • 3
    • 4
  1. 1.Department of GeographyUniversity of ColoradoBoulderUSA
  2. 2.Department of Soil and Crop SciencesColorado State UniversityFort CollinsUSA
  3. 3.Ecologia del Paramo y Bosques Ardinos ProjectQuito
  4. 4.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations