, Volume 6, Issue 7, pp 609–629 | Cite as

Biomass, Carbon, and Nitrogen Pools in Mexican Tropical Dry Forest Landscapes

  • Víctor J. Jaramillo
  • J. Boone Kauffman
  • Lyliana Rentería-Rodríguez
  • Dian L. Cummings
  • Lisa J. Ellingson
Original Article


Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.


tropical dry forest tropical floodplain forest tropical pastures biomass soil carbon soil nitrogen carbon pools nitrogen pools land-use change deforestation 



We thank the Estación de Biologia Chamela, UNAM and Ramiro Peña and Mario González of the Ejido San Mateo for allowing us to conduct these studies on their lands and for providing logistical support during the study. We are grateful to Georgina Garcia and Pilar Islas for skillful technical assistance in the laboratory. Raúl Ahedo provided invaluable help during field work and in preparing the figures and tables for the manuscript. Pedro González Flores and Teresa González assisted in data collection in the field. We also thank R. Flint Hughes and two anonymous reviewers for their helpful comments on previous drafts. This study was funded by Cooperative Agreement CR-821860-01-0 with the US Environmental Protection Agency and by the National Science Foundation’s Ecosystems Studies Program. V.J.J. acknowledges the support of the START program of IGBP during data analysis, as well as UNAM, CONACyT, and Dr. Dennis Ojima, through NASA grant no. NAGS-4646, for providing support with manuscript preparation during a sabbatical leave. J.B.K. and D.L.C. thank Cimarron Kauffman for his patience and Kenai Kauffman, who delayed coming into this world long enough for the first draft of this manuscript to be completed.


  1. 1.
    Balvanera, P, Lott, E, Segura, G, Siebe, C, Islas, A 2002Patterns of β-diversity in a Mexican tropical dry forest.J Veget Sci1314558Google Scholar
  2. 2.
    Brown, JK, Roussopoulous, PJ 1974Eliminating biases in the planar intersect method for estimating volumes of small fuels.For Sci203506Google Scholar
  3. 3.
    Brown, S, Gillespie, AJR, Lugo, AE 1989Biomass estimation methods for tropical forests with applications to forest inventory data.For Sci35881902Google Scholar
  4. 4.
    Bullock, SH, Solís-Magallanes, A 1990Phenology of canopy trees of a tropical deciduous forest in México.Biotropica1416187Google Scholar
  5. 5.
    Cairns, MA, Brown, S, Helmer, EH, Baumgardner, GA 1997Root biomass allocation in the world’s upland forests.Oecologia111111CrossRefGoogle Scholar
  6. 6.
    Campo, J 1995Ciclo del fósforo en un ecosistema tropical estacional [dissertation].Universidad Nacional Autónoma de MéxicoMéxico (DF)153Google Scholar
  7. 7.
    Castellanos, J, Maass, JM, Kummerow, J 1991Root biomass of dry deciduous tropical forest in México.Plant Soil1312258Google Scholar
  8. 8.
    Challenger, A 1998Utilización y conservación de los ecosistemas terrrestres de México.Comisión Nacional para el Conocimiento y Uso de la BiodiversidadMéxico (DF)847Google Scholar
  9. 9.
    COTECOCA1989Memorias del estado de Jalisco.Secretaría de Agricultura, Ganaderia, Recursos Pesqueros y AlimentaciónMéxico (DF)Google Scholar
  10. 10.
    Cotler H, Durán E, Siebe C. Suelos y geomorfología. In: Noguera FA, Quesada MR, Vega JH, Garcia-Aldrete AN, editors. Historia natural de Chamela. México (DF). Instituto de Biologia UNAM. Forthcoming Google Scholar
  11. 11.
    Cuevas, E 1995Biology of the belowground system of tropical dry forests.Bullock, SHMooney, HAMedina, E eds. Seasonally dry tropical forests.Cambridge University PressCambridge (UK)36283Google Scholar
  12. 12.
    Cummings, DL, Kauffman, JB, Perry, DA, Hughes, RF 2002Aboveground biomass and structure of rainforest in the southwestern Brazilian Amazon.For Ecol Manage163293307CrossRefGoogle Scholar
  13. 13.
    De Castro, EA, Kauffman, JB 1998Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire.J Trop Ecol1426383CrossRefGoogle Scholar
  14. 14.
    Delaney, M, Brown, S, Lugo, AE, Torres-Lezama, A, Bello Quintero, N 1997The distribution of organic carbon in major components of forests located in five life zones of Venezuela.J Trop Ecol13697708Google Scholar
  15. 15.
    Detwiller, RP 1986Land use change and the global carbon cycle: the role of tropical soils.Biogeochemistry26793Google Scholar
  16. 16.
    Edwards, PJ, Grubb, PJ 1982Studies of mineral cycling in a montane rain forest in New Guinea. IV. Soil characteristics and the division of mineral elements between the vegetation and soil.J Ecol7064966Google Scholar
  17. 17.
    Fearnside, PM, Barbosa, RI 1998Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia.For Ecol Manage10814766CrossRefGoogle Scholar
  18. 18.
    Garcia-Oliva, F, Casar, I, Morales, P, Maass, JM 1994Forest-to-pasture conversion influences on soil organic carbon dynamics in a tropical deciduous forest.Oecologia993926Google Scholar
  19. 19.
    Garcia-Oliva, F, Maass, JM, Galicia, L 1995Rainstorm analysis and rainfall erosivity of a seasonal tropical region with strong cyclonic influence on the Pacific coast of Mexico.J Appl Meteorol3424918CrossRefGoogle Scholar
  20. 20.
    Guild, LS, Kauffman, JB, Ellingson, LJ, Cummings, DL, Castro, EA, Babbitt, RE, Ward, DE 1998Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondonia, Brazil during SCAR-B.J Geophys Res10332,091100Google Scholar
  21. 21.
    Houghton, RA 1999The annual net flux of carbon to the atmosphere from changes in land use 1850–1990.Tellus51B298313Google Scholar
  22. 22.
    Hughes, RF, Kauffman, JB, Jaramillo, VJ 1999Biomass, carbon, and nutrient accumulation in tropical evergreen secondary forest of the Los Tuxtlas region, Mexico.Ecology801892907Google Scholar
  23. 23.
    Hughes, F, Kauffman, JB, Jaramillo, VJ 2000Ecosystem-scale impacts of deforestation and land use in a humid tropical region of México.Ecol Appl1051527Google Scholar
  24. 24.
    Jackson, RB, Canadell, J, Ehleringer, JR, Mooney, HA, Sala, OE, Schulze, ED 1996A global analysis of root distributions for terrestrial biomes.Oecologia108389411Google Scholar
  25. 25.
    Jaramillo VJ, Ahedo-Hernández R, Kauffman JB. Root biomass and carbon in a tropical evergreen forest of Mexico: changes with secondary succession and forest conversion to pasture. J Trop Ecol. forthcoming Google Scholar
  26. 26.
    Jobbágy, EG, Jackson, R 2000The vertical distribution of soil organic carbon and its relation to climate and vegetation.Ecol Appl1042336Google Scholar
  27. 27.
    Jordan, CF, Uhl, C 1978Biomass of a “tierra firme” forest of the Amazon Basin.Oecol Plant13387400Google Scholar
  28. 28.
    Junk WJ, Bailey PB, Sparks RE. 1989. The floodpulse concept in river–floodplain systems. In: DodgeDP, editor. Proceedings of the International Large River Symposium. J Can Fish Aqua Sci 106:11–127 Google Scholar
  29. 29.
    Kauffman, JB, Cummings, DL, Ward, DE 1998Fire in the Brazilian Amazon. 2. Biomass, nutrient pools and losses in cattle pastures.Oecologia11341527CrossRefGoogle Scholar
  30. 30.
    Kauffman, JB, Cummings, DL, Ward, DE, Babbitt, R 1995Fire in the Brazilian Amazon 1. Biomass, nutrient pools, and losses in slashed primary forests.Oecologia104397408Google Scholar
  31. 31.
    Kauffman, JB, Sanford, RL, Cummings, DL, Sampaio, EVSB, Salcedo, IH 1993Biomass and nutrient dynamics associated with slash fires in Neotropical dry forest.Ecology7414051Google Scholar
  32. 32.
    KauffmanJBSteeleMDCummingsDLJaramilloVJBiomass dynamics associated with deforestation, fire, and conversion to cattle pasture in a Mexican tropical dry forest. For Ecol Manage. Forthcoming Google Scholar
  33. 33.
    Kauffman, JB, Uhl, C, Cummings, DL 1988Fire in the Venezuelan Amazon. 1. Fuel biomass and fire chemistry in the evergreen rainforest of Venezuela.Oikos5316775Google Scholar
  34. 34.
    Lott, EJ 1993Annotated checklist of the vascular flora of the Chamela Bay region, Jalisco, Mexico.Occ Papers Calif Acad Sci148160Google Scholar
  35. 35.
    Lott, EJ, Bullock, SH, Solis-Magallanes, A 1987Floristic diversity and structure of upland and arroyo forests of coastal Jalisco.Biotropica1922835Google Scholar
  36. 36.
    Lugo, AE, Murphy, P 1986Nutrient dynamics of a Puerto Rican subtropical dry forest.J Trop Ecol25572Google Scholar
  37. 37.
    Lugo, AE, Sanchez, MJ, Brown, S 1986Land use and organic carbon content of some subtropical soils.Plant Soil9618596Google Scholar
  38. 38.
    Maass, JM 1995Conversion of tropical dry forest to pasture and agriculture.Bullock, SHMooney, HAMedina, E eds. Seasonally dry tropical forests.Cambridge University PressCambridge (UK)399422Google Scholar
  39. 39.
    Maass, JM, Martínez-Yrízar, A, Patiño, C, Sarukhán, J 2002Distribution and annual net accumulation of above-ground dead phytomass and its influence on throughfall quality in a Mexican tropical deciduous forest ecosystem.J Trop Ecol1882134CrossRefGoogle Scholar
  40. 40.
    Martínez-Yrízar, A 1995Biomass distribution and primary productivity of tropical dry forests.Bullock, SHMooney, HAMedina, E eds. Seasonally dry tropical forests.Cambridge University PressCambridge (UK)32645Google Scholar
  41. 41.
    Martínez-Yrízar, A, Sarukhán, J 1993Cambios estacionales del mantillo en el suelo de un bosque tropical caducifolio y uno subcaducifolio en Chamela, Jalisco, México.Acta Bot Mex2116Google Scholar
  42. 42.
    Martínez-Yrízar, A, Sarukhán, J, Pérez-Jiménez, A, Rincón, E, Maass, M, Solis-Magallanes, A, Cervantes, L 1992Aboveground phytomass of a tropical deciduous forest on the coast of Jalisco, Mexico.J Trop Ecol88796Google Scholar
  43. 43.
    Masera, O, Cerón, AD, Ordóñez, A 2001Forestry mitigation options for México: finding synergies between national sustainable development priorities and global concerns.Mitig Adapt Strat Global Change6291312CrossRefGoogle Scholar
  44. 44.
    Masera, O, Ordoñez, MJ, Dirzo, R 1997Carbon emissions from Mexican forests: current situation and long-term scenarios.Clim Change3526595CrossRefGoogle Scholar
  45. 45.
    Miranda, F, Hernández, XE 1963Los tipos de vegetación de México y su clasificación.Bol Soci Bot Mex2829178Google Scholar
  46. 46.
    Mooney, HA, Bullock, SH, Medina, E 1995Introduction.Bullock, SHMooney, HAMedina, E eds. Seasonally dry tropical forests.Cambridge University PressCambridge (UK)18Google Scholar
  47. 47.
    Murphy, PG, Lugo, AE 1995Dry forests of Central America and the Caribbean islands.Bullock, SHMooney, HAMedina, E eds. Seasonally dry tropical forests.Cambridge University PressCambridge (UK)934Google Scholar
  48. 48.
    Murphy, PG, Lugo, AE 1986aEcology of tropical dry forest.Annu Rev Ecol Syst176788Google Scholar
  49. 49.
    Murphy, PG, Lugo, AE 1986bStructure and biomass of a subtropical dry forest in Puerto Rico.Biotropica188996Google Scholar
  50. 50.
    Murty, D, Kirschbaum, MUF, McMurtrie, RE, McGilvray, H 2002Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature.Global Change Biol810523CrossRefGoogle Scholar
  51. 51.
    Neill, C, Fry, B, Melillo, JM, Steudler, PA, Moraes, JFL, Cerri, C 1996Forest- and pasture-derived carbon contributions to carbon stocks and microbial respiration of tropical pasture soils.Oecologia1071139Google Scholar
  52. 52.
    Naiman, RJ, Décamps, H 1997The ecology of interfaces: riparian zones.Ann Rev Ecol Syst2862158CrossRefGoogle Scholar
  53. 53.
    Nelson, DW, Sommers, LE 1996Total carbon, organic carbon and organic matter.Sparks, DL eds. Methods of soil analysis. Chemical methods. Part 3. Soil Science Society of America Book Series No. 5.Soil Science Society of America. and American Society of AgronomyMadison (WI)Google Scholar
  54. 54.
    Putz, FE 1983Liana biomass and leaf area of a “tierra firme” forest in the Rio Negro Basin, Venezuela.Biotropica151859PubMedGoogle Scholar
  55. 55.
    Nykvist, N 1997Total distribution of plant nutrients in a tropical rainforest ecosystem, Sabah, Malaysia.Ambio261527Google Scholar
  56. 56.
    Sanford Jr, RL 1989Root systems of three adjacent, old growth Amazon forests and associated transition zones.J Trop For Sci326879Google Scholar
  57. 57.
    Sanford Jr, RL, Cuevas, E 1996Root growth and rhizosphere interactions in tropical forests.Mulkey, SSChazdon, RLSmith, AP eds. Tropical forest plant ecophysiology.Chapman & HallNew York268300Google Scholar
  58. 58.
    Scholes, RJ, Schulze, E-D, Pitelka, LF, Hall, DO 1999Biogeochemistry of terrestrial ecosystems.Walker, BSteffen, WCanadell, JIngram, J eds. The terrestrial biosphere and global change.Cambridge University PressCambridge (UK)27193Google Scholar
  59. 59.
    Schlesinger, WH 1997Biogeochemistry: an analysis of global change.Academic PressNew York588Google Scholar
  60. 60.
    Schulze, E-D, Scholes, RJ, Ehleringer, JR, Hunt, LA, Canadell, J, Chapin, FS, Steffen, WL 1999.Walker, BSteffen, WCanadell, JIngram, J eds. The terrestrial biosphere and global change.Cambridge University PressCambridge (UK)1944Google Scholar
  61. 61.
    Solis, E 1993Caracteristicas fisicoquímicas de un suelo en un ecosistema tropical estacional [thesis].Universidad Nacional Autónoma de MéxicoMéxico (DF)91Google Scholar
  62. 62.
    Steele, MD 1999Biomass and nutrient dynamics associated with deforestation, biomass burning and conversion to pasture in a tropical dry forest in México [thesis].Oregon State UniversityCorvallis (OR)180Google Scholar
  63. 63.
    Trejo, I, Dirzo, R 2000Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico.Biol Conserv9413342CrossRefGoogle Scholar
  64. 64.
    Van Wagner, CE 1968The line intersect method in forest fuel sampling.For Sci14206Google Scholar
  65. 65.
    Veldkamp, E 1994Organic carbon turnover in three tropical soils under pasture after deforestation.Soil Sci Soc Am J5817580Google Scholar
  66. 66.
    Vitousek, PM, Aber, JD, Howarth, RW, Likens, GE, Matson, PA, Schindler, DW, Schlesinger, WH, Tilman, DG 1997Human alteration of the global nitrogen cycle: sources and consequences.Ecol Appl773750Google Scholar
  67. 67.
    Walker, BH, Steffen, WL 1999The nature of global change.Walker, BSteffen, WCanadell, JIngram, J eds. The terrestrial biosphere and global change.Cambridge University PressCambridge (UK)118Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Víctor J. Jaramillo
    • 1
  • J. Boone Kauffman
    • 2
  • Lyliana Rentería-Rodríguez
    • 1
  • Dian L. Cummings
    • 2
  • Lisa J. Ellingson
    • 2
  1. 1.Departamento de Ecología de los Recursos Naturales, Instituto de EcologíaUniversidad Nacional Autónoma de México, A.P. 27-3 Xangari, C.P. 58090 Morelia, Mich.México
  2. 2.Department of Fisheries and WildlifeOregon State University, Corvallis, Oregon 97330USA

Personalised recommendations