Environmental Economics and Policy Studies

, Volume 17, Issue 3, pp 369–388 | Cite as

The footprint of using metals: new metrics of consumption and productivity

  • Thomas O. Wiedmann
  • Heinz Schandl
  • Daniel Moran
Research Article Studies on Industrial Ecology


Metal use and modern society are intrinsically linked and it is no surprise that global processes of industrialization and urbanization have led to ever increasing amounts of metal use. In recent decades, global supply and demand networks for metals have become increasingly complex. Industrial Ecology research is well placed to unpack this complexity and to explore potential resource efficiencies for metals. This is especially important during the current period of rising ore prices. We examine patterns of supply and demand for iron ore and bauxite, and recent trends in resource productivity of these two important metal ores. We introduce a consumption perspective and compare the material footprint of metal ores to the GDP of countries to look at how much economic benefit countries achieve per unit of metal footprint. We find that for the past two decades global amounts of iron ore and bauxite extractions have risen faster than global GDP, that both supply and demand of iron ore and bauxite have been concentrated in a handful of countries and that resource productivity from a consumption perspective has fallen in developed nations, as well as globally. The research shows no saturation of metal ore consumption at any level of income. Policies will be required to enhance both the productivity of metal production and the economic productivity of consumption (GDP per metal footprint) through more efficient mining, product design, reuse and recycling.


Material footprint Metal ores Resource productivity Multi-region input–output analysis Sustainable resource management 

JEL Classification

C67 F18 F64 Q31 Q37 Q56 P17 



We thank James West for his advice on metal ore grades. Heinz Schandl acknowledges financial support from the Commonwealth Scientific and Industrial Research Organisation’s Climate Adaptation Flagship and Integrated Carbon Pathways Initiative and the United Nations Environment Program (UNEP).


  1. ABS (2011) Australian National Accounts: Input-Output Tables (Product Details)–Electronic Publication, 2007-08, ABS Catalogue Number 5215.0.55.001, Australian Bureau of Statistics, Canberra, Released on 09/12/2011,
  2. Allwood JM, Cullen JM (2012) Sustainable materials–with both eyes open: future buildings, vehicles, products and equipment–made efficiently and made with less new material. UIT Cambridge Ltd., Cambridge,
  3. Ayres RU, Campbell CJ, Casten TR, Horne PJ, Kümmel R, Laitner JA, Schulte UG, van den Bergh JCJM, von Weizsäcker EU (2013) Sustainability transition and economic growth enigma: Money or energy? Environ Innov Soc Transit 9(0):8–12 pii:S2210422413000622CrossRefGoogle Scholar
  4. Bergmann L (2013) Bound by chains of carbon: ecological–economic geographies of globalization. Ann Assoc Am Geogr 103(6):1348–1370. doi: 10.1080/00045608.2013.779547 CrossRefGoogle Scholar
  5. Bleischwitz R (2011) Resource efficiency. J Ind Ecol 15(5):644–646. doi: 10.1111/j.1530-9290.2011.00384.x CrossRefGoogle Scholar
  6. Bleischwitz R, Dittrich M, Pierdicca C (2012) Coltan from Central Africa, international trade and implications for any certification. Res Policy 37(1):19–29 pii:S0301420711000833CrossRefGoogle Scholar
  7. Bringezu S, Bleischwitz R (2009) Sustainable resource management–global trends, Visions and Policies Greenleaf Publishing, Sheffield,
  8. Bruckner M, Giljum S, Lutz C, Wiebe KS (2012) Materials embodied in international trade—global material extraction and consumption between 1995 and 2005. Glob Environ Change 22(3):568–576. doi: 10.1016/j.gloenvcha.2012.03.011 CrossRefGoogle Scholar
  9. Chen W-Q, Graedel TE (2012) Anthropogenic cycles of the elements: a critical review. Environ Sci Technol 46(16):8574–8586. doi: 10.1021/es3010333 CrossRefGoogle Scholar
  10. CSIRO (2013) Global Material Flow Database. Commonwealth Scientific and Industrial Research Organisation. Canberra,
  11. Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34(0):9–20.
  12. Cullen JM, Allwood JM (2013) Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environ Sci Technol 47(7):3057–3064. doi: 10.1021/es304256s Google Scholar
  13. Cullen JM, Allwood JM, Bambach MD (2013) Mapping the global flow of steel: from steelmaking to end-use goods. Environ Sci Technol 46(24):13048–13055. doi: 10.1021/es302433p CrossRefGoogle Scholar
  14. Dittrich M, Bringezu S (2010) The physical dimension of international trade, part 1: direct global flows between 1962 and 2005. Ecol Econ 69(9):1838–1847. doi: 10.1016/j.ecolecon.2010.04.023 CrossRefGoogle Scholar
  15. Dittrich M, Bringezu S, Schütz H (2012) The physical dimension of international trade, part 2: Indirect global resource flows between 1962 and 2005. Ecol Ecol 79:32–43. doi: 10.1016/j.ecolecon.2012.04.014 CrossRefGoogle Scholar
  16. Eckelman MJ, Reck BK, Graedel TE (2012) Exploring the global journey of nickel with markov chain models. J Ind Ecol 16(3):334–342. doi: 10.1111/j.1530-9290.2011.00425.x CrossRefGoogle Scholar
  17. Elshkak A, Graedel TE (2013) Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J Clean Prod 59(0):260–273 pii:S0959652613004575CrossRefGoogle Scholar
  18. Eurostat (2011) Economy wide material flow accounts (EW-MFA): Compilation Guidelines for Eurostat’s 2011 EW-MFA questionnaire. Statistical Office of the European Communities, Luxembourg.
  19. Ewing BR, Hawkins TR, Wiedmann TO, Galli A, Ercin EA, Weinzettel J, Steen-Olsen K (2012) Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol Indic 23:1–8.
  20. Fang K, Heijungs R, de Snoo GR (2014) Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: overview of a footprint family. Ecol Indic 36(0):508–518.
  21. Fischer-Kowalski M, Krausmann F, Giljum S, Lutter S, Mayer A, Bringezu S, Moriguchi Y, Schütz H, Schandl H, Weisz H (2011) Methodology and indicators of economy-wide material flow accounting. J Ind Ecol 15(6):855–876. doi: 10.1111/j.1530-9290.2011.00366.x CrossRefGoogle Scholar
  22. Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S (2012) Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet. Ecol Indic 16:100–112. doi: 10.1016/j.ecolind.2011.06.017 CrossRefGoogle Scholar
  23. Galli A, Weinzettel J, Cranston G, Ercin E (2013) A footprint family extended MRIO model to support Europe’s transition to a one planet economy. Sci Total Environ 461–462(0):813–818.
  24. Gan Y, Zhang T, Liang S, Zhao Z, Li N (2013) How to deal with resource productivity. J Ind Ecol 17(3):440–451. doi: 10.1111/j.1530-9290.2012.00547.x CrossRefGoogle Scholar
  25. Gerst MD, Graedel TE (2008) In-use stocks of metals: status and implications. Environ Sci Technol 42(19):7038–7045. doi: 10.1021/es800420p CrossRefGoogle Scholar
  26. Giljum S, Lutter S, Bruckner M, Aparcana S (2013) State of play of national consumption-based indicators—a review and evaluation of available methods and data to calculate footprint-type (consumption-based) indicators for materials, water, land and carbon. ENV Fl/2013/env.fl(2013) 296596, 3 May 2013. Sustainable Europe Research Institute (SERI), Vienna, Austria.
  27. Giljum S, Dittrich M, Lieber M, Lutter S (2014) Global patterns of material flows and their socio-economic and environmental implications: a MFA study on all countries world-wide from 1980 to 2009. Resources, 3(1), 319–339.
  28. Graedel TE, Allwood J, Birat J-P, Buchert M, Hagelüken C, Reck BK, Sibley SF, Sonnemann G (2011) What do we know about metal recycling rates? J Ind Ecol. doi: 10.1111/j.1530-9290.2011.00342.x Google Scholar
  29. Hertwich EG, Peters GP (2009) Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 43(16):6414–6420. doi: 10.1021/es803496a CrossRefGoogle Scholar
  30. Kanemoto K, Murray J (2013) Chapter 1: What is MRIO? MRIO benefits & limitations. In: J. Murray and M. Lenzen, The sustainability practitioner’s guide to multi-regional input-output analysis, 2-11, Common Ground Publishing, On Sustainability, Champaign, Illinois,
  31. Kovanda J, Weinzettel J (2013) The importance of raw material equivalents in economy-wide material flow accounting and its policy dimension. Environ Sci Policy 29(0):71–80 pii:S1462901113000063CrossRefGoogle Scholar
  32. Kovanda J, van de Sand I, Schütz H, Bringezu S (2012) Economy-wide material flow indicators: overall framework, purposes and uses and comparison of material use and resource intensity of the Czech Republic, Germany and the EU-15. Ecol Indic 17(0):88–98. doi: 10.1016/j.ecolind.2011.04.020 CrossRefGoogle Scholar
  33. Krausmann F, Gingrich S, Eisenmenger N, Erb K-H, Haberl H, Fischer-Kowalski M (2013) Growth in global materials use, GDP and population during the 20th century. Ecol Econ 68(10):2696–2705. doi: 10.1016/j.ecolecon.2009.05.007 CrossRefGoogle Scholar
  34. Lenzen M, Kanemoto K, Moran D, Geschke A (2012) Mapping the structure of the world economy. Environ Sci Technol 46(15):8374–8381. doi: 10.1021/es300171x CrossRefGoogle Scholar
  35. Lenzen M, Moran D, Kanemoto K, Geschke A (2013) Building eora: a global multi-region input-output database at high country and sector resolution. Econ Syst Res 25(1):20–49. doi: 10.1080/09535314.2013.769938 CrossRefGoogle Scholar
  36. Leontief W (1936) Quantitative input and output relations in the economic system of the United States. Rev Econ Stat 18(3):105–125CrossRefGoogle Scholar
  37. Leontief W (1970) Environmental repercussions and the economic structure: an input-output approach. Rev Econ Stat, 52(3), 262–271.
  38. Leontief WW (1986) Input output economics, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  39. Liu G, Müller DB (2013a) Centennial evolution of aluminum in-use stocks on our aluminized planet. Environ Sci Technol 47(9):4882–4888. doi: 10.1021/es305108p CrossRefGoogle Scholar
  40. Liu G, Müller DB (2013b) Mapping the global journey of anthropogenic aluminum: a trade-linked multilevel material flow analysis. Environ Sci Technol 47(20):11873–11881. doi: 10.1021/es4024404 CrossRefGoogle Scholar
  41. Liu G, Bangs CE, Muller DB (2013) Stock dynamics and emission pathways of the global aluminium cycle. Nature Clim Change 3(4):338–342. doi: 10.1038/nclimate1698 CrossRefGoogle Scholar
  42. Martínez-Alier J, Pascual U, Vivien F-D, Zaccai E (2010) Sustainable de-growth: mapping the context, criticisms and future prospects of an emergent paradigm. Ecol Econ 69(9):1741–1747. doi: 10.1016/j.ecolecon.2010.04.017 CrossRefGoogle Scholar
  43. McKinsey Global Institute (2011) Resource revolution: meeting the world’s energy, materials, food, and water needs.
  44. Milford RL, Pauliuk S, Allwood JM, Müller DB (2013) The roles of energy and material efficiency in meeting steel industry CO2 targets. Environ Sci Technol 47(7):3455–3462. doi: 10.1021/es3031424 CrossRefGoogle Scholar
  45. Miller RE, Blair PD (2009) Input-output analysis: foundations and extensions; 2nd Edition, 2nd edn. Cambridge University Press,
  46. Moran DD, Lenzen M, Kanemoto K, Geschke A (2013) Does ecologically unequal exchange occur? Ecol Econ 89:177–186. doi: 10.1016/j.ecolecon.2013.02.013 CrossRefGoogle Scholar
  47. Moynihan MC, Allwood JM (2012) The flow of steel into the construction sector. Resour Conserv Recycl 68(0):88–95 pii:S0921344912001474CrossRefGoogle Scholar
  48. Müller DB, Wang T, Duval B (2011) Patterns of iron use in societal evolution. Environ Sci Technol 45:182–188CrossRefGoogle Scholar
  49. Müller DB, Liu G, Løvik AN, Modaresi R, Pauliuk S, Steinhoff FS, Brattebø H (2013) Carbon emissions of infrastructure development. Environ Sci Technol 47(20):11739–11746. doi: 10.1021/es402618m CrossRefGoogle Scholar
  50. Muñoz P, Giljum S, Roca J (2009) The raw material equivalents of international trade. J Ind Ecol 13(6):881–897. doi: 10.1111/j.1530-9290.2009.00154.x CrossRefGoogle Scholar
  51. Myers N, Kent J (2003) New consumers: the influence of affluence on the environment. Proc Natl Acad Sci, 100(8), 4963–4968.
  52. Nansai K, Nakajima K, Kagawa S, Kondo Y, Suh S, Shigetomi Y, Oshita Y (2014) Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum. Environ Sci Technol 48(3):1391–1400. doi: 10.1021/es4033452 CrossRefGoogle Scholar
  53. OECD (2011) Resource Productivity in the G8 and the OECD–A report in the framework of the kobe 3R action plan. Organisation for Economic Co-operation and Development, Paris,
  54. Pauliuk S, Milford RL, Müller DB, Allwood JM (2013a) The steel scrap age. Environ Sci Technol 47(7):3448–3454. doi: 10.1021/es303149z Google Scholar
  55. Pauliuk S, Wang T, Müller DB (2013b) Steel all over the world: estimating in-use stocks of iron for 200 countries. Resour Conserv Recycl 71(0):22–30 pii:S0921344912002078CrossRefGoogle Scholar
  56. Prior T, Giurco D, Mudd G, Mason L, Behrisch J (2012) Resource depletion, peak minerals and the implications for sustainable resource management. Glob Environ Change 22(3):577–587 pii:S0959378011001361CrossRefGoogle Scholar
  57. Reck BK, Graedel TE (2012) Challenges in metal recycling. Science, 337(6095), 690–695.
  58. Schaffartzik A, Eisenmenger N, Krausmann F, Weisz H (2013) Consumption-based material flow accounting. J Ind Ecol. doi: 10.1111/jiec.12055 Google Scholar
  59. Schandl H, West J (2010) Resource use and resource efficiency in the Asia-Pacific region. Glob Environ Change 20(4):636–647. doi: 10.1016/j.gloenvcha.2010.06.003 CrossRefGoogle Scholar
  60. Schandl H, West J (2012) Material flows and material productivity in China, Australia, and Japan. J Ind Ecol 16(3):352–364. doi: 10.1111/j.1530-9290.2011.00420.x CrossRefGoogle Scholar
  61. Schoer K, Weinzettel J, Kovanda J, Giegrich J, Lauwigi C (2012) Raw material consumption of the European union—concept, calculation method, and results. Environ Sci Technol 46(16):8903–8909. doi: 10.1021/es300434c CrossRefGoogle Scholar
  62. Schoer K, Wood R, Arto I, Weinzettel J (2013) Estimating raw material equivalents on a macro-level: comparison of multi-regional input–output analysis and hybrid LCI-IO. Environ Sci Technol 47(24):14282–14289. doi: 10.1021/es404166f CrossRefGoogle Scholar
  63. Steen-Olsen K, Weinzettel J, Cranston G, Ercin AE, Hertwich EG (2012) Carbon, land, and water footprint accounts for the european union: consumption, production, and displacements through international trade. Environ Sci Technol 46(20):10883–10891. doi: 10.1021/es301949t CrossRefGoogle Scholar
  64. Steinberger JK, Krausmann F (2011) Material and energy productivity. Environ Sci Technol 45(4):1169–1176. doi: 10.1021/es1028537 CrossRefGoogle Scholar
  65. Steinberger J, Krausmann F, Getzner M, Schandl H, West J (2013) Development and dematerialization: an international study. PLoS One 8(10):e70385. doi: 10.1371/journal.pone.0070385 CrossRefGoogle Scholar
  66. Turner K, Lenzen M, Wiedmann T, Barrett J (2007) Examining the global environmental impact of regional consumption activities–part 1: a technical note on combining input-output and ecological footprint analysis. Ecol Econ 62(1):37–44. doi: 10.1016/j.ecolecon.2006.12.002 CrossRefGoogle Scholar
  67. UNEP (2011) Decoupling natural resource use and environmental impacts from economic growth. United Nations Environment Programme, Nairobi,
  68. Vidal O, Goffe B, Arndt N (2013) Metals for a low-carbon society. Nat Geosci 6(11):894–896. doi: 10.1038/ngeo1993 CrossRefGoogle Scholar
  69. von Weizsäcker EU, Hargroves C, Smith, MH, Desha C, Stasinopoulos P (2009) Factor five–transforming the global economy through 80% improvements in resource productivity. Routledge, London,
  70. Weinzettel J, Kovanda J (2009) Assessing socioeconomic metabolism through hybrid life cycle assessment–the case of the Czech Republic. J Ind Ecol 13(4):607–621. doi: 10.1111/j.1530-9290.2009.00144.x CrossRefGoogle Scholar
  71. Weinzettel J, Kovanda J (2011) Structural decomposition analysis of raw material consumption—the case of the Czech Republic. J Ind Ecol 15(6):893–907. doi: 10.1111/j.1530-9290.2011.00378.x CrossRefGoogle Scholar
  72. Weisz H, Duchin F (2006) Physical and monetary input-output analysis: What makes the difference? Ecol Econ 57(3):534–541. doi: 10.1016/j.ecolecon.2005.05.011 CrossRefGoogle Scholar
  73. West J (2013) Personal communication, 12 November 2013. CSIRO Ecosystem Sciences, Canberra, AustraliaGoogle Scholar
  74. West J, Schandl H (2013) Material use and material efficiency in Latin America and the Caribbean. Ecol Econ 94(0):19–27 pii:S0921800913002140CrossRefGoogle Scholar
  75. Wiebe KS, Bruckner M, Giljum S, Lutz C, Polzin C (2012) Carbon and materials embodied in the international trade of emerging economies. J Ind Ecol 16(4):636–646. doi: 10.1111/j.1530-9290.2012.00504.x CrossRefGoogle Scholar
  76. Wiedmann T (2009) A review of recent multi-region input-output models used for consumption-based emission and resource accounting. Ecol Econ 69(2):211–222. doi: 10.1016/j.ecolecon.2009.08.026 CrossRefGoogle Scholar
  77. Wiedmann T, Wilting HC, Lenzen M, Lutter S, Palm V (2011) Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis. Ecol Econ 70(11):1937–1945. doi: 10.1016/j.ecolecon.2011.06.014 CrossRefGoogle Scholar
  78. Wiedmann TO, Schandl H, Lenzen M, Moran D, Suh S, West J, Kanemoto K (2013) The material footprint of nations. Proc Natl Acad Sci. doi: 10.1073/pnas.1220362110 Google Scholar
  79. Yellishetty M, Mudd GM (2014) Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India. J Clean Prod.

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Thomas O. Wiedmann
    • 1
    • 2
  • Heinz Schandl
    • 3
    • 4
  • Daniel Moran
    • 5
  1. 1.School of Civil and Environmental EngineeringUNSW AustraliaSydneyAustralia
  2. 2.ISA, School of Physics A28The University of SydneySydneyAustralia
  3. 3.CSIRO Ecosystem SciencesCanberraAustralia
  4. 4.School of SociologyAustralian National UniversityCanberraAustralia
  5. 5.Programme for Industrial Ecology, Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations