Artificial Life and Robotics

, Volume 23, Issue 4, pp 444–448 | Cite as

Behavioral pattern of pill bugs revealed in virtually infinite multiple T-maze

  • Jin Murano
  • Meiji Mitsuishi
  • Toru Moriyama
Original Article


A behavior called turn alternation has been studied extensively in terrestrial isopods. This behavior is seen when they alternate their path choice on successive trials of the T-maze test. We made the multiple T-maze device which consists of two turntables with a T-maze mounted on each and examined the behavior of 36 pill bugs (Armadillidium vulgare) that each completed 130 successive T-maze trials. As a result, in addition to turn alternation, turn repetition (turning in the same direction on two successive turns) appeared at a rate of 20%. In the turn sequences, we observed segments consisting of successive turn alternations and defined the number of turn alternations in a segment as the length of it. Cumulative frequency distribution of segment lengths obeyed power law with exponent of 1.76. This result suggests that pill bugs in the multiple T-maze device behaved as Lévy walkers which forage in an environment, where resources are unpredictably distributed.


Lévy walk Multiple T-maze Pill bug Turn alternation Turn repetition 


  1. 1.
    Dember DW, Richman CL (1989) Spontaneous alternation behavior. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Dingle H (1961) Correcting behavior in boxelder bugs. Ecology 42:207–211CrossRefGoogle Scholar
  3. 3.
    Lepley WM, Rice GE (1952) Behavior variability in paramecia as a function of guided act sequences. J Comp Physiol Psychol 45:283–286CrossRefGoogle Scholar
  4. 4.
    Pate JL, Bell GL (1971) Alternation behavior of children in a cross-maze. Psychon Sci 23:431–432CrossRefGoogle Scholar
  5. 5.
    Dember WN, Earl RW (1957) Analysis of exploratory, manipulatory and curiosity behaviors. Psychol Rev 64:91–96CrossRefGoogle Scholar
  6. 6.
    Estates WK, Schoeffler MS (1955) Analysis of variables influencing alteration after forced trials. J Comp Physiol Psychol 48:357–362CrossRefGoogle Scholar
  7. 7.
    Beal IL, Webster DM (1971) The relevance of leg-movement cues to turn alternation in woodlice (Porcellio scaber). Anim Behav 19:353–356CrossRefGoogle Scholar
  8. 8.
    Hayashi Y (2013), The mechanism of turn alternation in pill bugs. Tsukuba J Biol 12:TJB201307YHGoogle Scholar
  9. 9.
    Hughes RN (1967) Turn alternation in woodlice. Anim Behav 15:282–286CrossRefGoogle Scholar
  10. 10.
    Hughes RN (1978) Effects of blinding, antennectomy, food deprivation, and simulated natural conditions on alternation in woodlice (Porcellio scaber). J Biol Psychol 20:35–40Google Scholar
  11. 11.
    Hughes RN (1985) Mechanisms for turn alternation in woodlice. Anim Learn Behav 13:253–260CrossRefGoogle Scholar
  12. 12.
    Hughes RN (1987) Mechanisms for turn alternation in four invertebrate species. Behav Process 14:89–103CrossRefGoogle Scholar
  13. 13.
    Hughes RN (1989) Essential involvement of specific legs in turn alternation of the woodlouse, Porcellio scaber. Comp Biochem Physiol 93A:493–497CrossRefGoogle Scholar
  14. 14.
    Hughes RN (1989) Tactile cues, bilaterally asymmetrical leg movements, and body distortion in isopod turn alternation. Int J Comp Psychol 2:231–244Google Scholar
  15. 15.
    Hughes RN (1989) Phylogenic comparison. In: Dember WN, Richman CL (eds) Spontaneous alternation behavior. Springer, New York, pp 39–57CrossRefGoogle Scholar
  16. 16.
    Hughes RN (1990) Directional influences of the sixth leg in turn alternation of the terrestrial isopod, Porcellio scaber. Biol Behav 15:169–182Google Scholar
  17. 17.
    Hughes RN (1992) Effects of substrate brightness differences on isopod (Porcellio scaber) turning and turn alternation. Behav Process 27:95–100CrossRefGoogle Scholar
  18. 18.
    Hughes RN (2008) An intra-species demonstration of the independence of distance and time in turn alternation of the terrestrial isopod, Porcellio scaber. Behav Process 78:38–43CrossRefGoogle Scholar
  19. 19.
    Iwata K, Watanabe M (1957) Alternate turning response in Armadillidium vulgare: 2. Straight moving and turning. Ann Anim Psychol 6:53–56Google Scholar
  20. 20.
    Iwata K, Watanabe M (1957) Alternate turning response in Armadillidium vulgare: 3. Effect of preceding turn. Ann Anim Psychol 7:57–60CrossRefGoogle Scholar
  21. 21.
    Iwata K, Watanabe M (1957) Alternate turning response in Armadillidium vulgare: 4. Tracks in maze. Zool Mag 66:464–467Google Scholar
  22. 22.
    Iwata K, Watanabe M (1957) Alternate turning response in Armadillidium vulgare: 5. Sense organ functioning in the response. Zool Mag 66:468–471Google Scholar
  23. 23.
    Kawai T (2010) Turn alternation in pill bugs (Armadillidium vulgare): effect of path length, orientation, and the number of forced turns. Humanit Rev 60:113–112Google Scholar
  24. 24.
    Kupfermann I (1966) Turn alternation in the pill bug (Armadillidium vulgare). Anim Behav 14:68–72CrossRefGoogle Scholar
  25. 25.
    Moriyama T (1999) Decision-making and turn alternation in pill bugs (Armadillidium vulgare). Int J Comp Psychol 12:153–170Google Scholar
  26. 26.
    Moriyama T, Migita M, Mitsuishi M (2016) Self-corrective behavior for turn alternation in pill bugs (Armadillidium vulgare). Behav Process 122:98–103CrossRefGoogle Scholar
  27. 27.
    Ono T, Takagi Y (2006) Turn alternation of the pill bug Armadillidium vulgare and its adaptive significance. Jpn J Appl Entomol Zool 50:325–330CrossRefGoogle Scholar
  28. 28.
    Watanabe M, Iwata K (1956) Alternative turning response of Armadillidium vulgare. Ann Anim Psychol 6:75–82CrossRefGoogle Scholar
  29. 29.
    Viswanathan G, Luz M, da Raposo E, Stanley H (2011) The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. 30.
    Bénichou O, Loverdo C, Moreau M et al (2011) Intermittent search strategies. Rev Mod Phys 83:81–129CrossRefGoogle Scholar
  31. 31.
    Edwards AM, Phillips RA, Watkins NW (2007) Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer search strategies. Nature 449:1044–1048CrossRefGoogle Scholar
  32. 32.
    Viswanathan GM, Afranasyev V, Buldyrev E et al (1996) Lévy flight search patterns of wandering albatrosses. Nature 381:413–415CrossRefGoogle Scholar
  33. 33.
    Humphries NE, Weimerskirch H, Queiroz N et al (2012) Foraging success of biological Lévy flights recorded in situ. Proc Natl Acad Sci USA 109:7169–7174CrossRefGoogle Scholar
  34. 34.
    Reynolds AM, Frye MA (2007) Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2:e354CrossRefGoogle Scholar
  35. 35.
    Zaburdaev V, Denisov S, Klafter J (2015) Lévy walks. Rev Mod Phys 87:483–530CrossRefGoogle Scholar
  36. 36.
    Viswanathan GM, Raposo EP, da Luz MGE (2008) Lévy flights and superdiffusion in random search: the biological encounters context. Phys Life Rev 5:133–162CrossRefGoogle Scholar
  37. 37.
    Boyer D, Ramos-Fernández G, Miramontes O et al. (2006) Scale-free foraging by primates emerges from their interaction with a complex environment. Proc Biol Sci 273:1743–1750CrossRefGoogle Scholar
  38. 38.
    Maye A, Hsieh CH, Sugihara G et al (2007) Order in spontaneous behavior. PLoS One 2:e443 (Giurfa M, editor)CrossRefGoogle Scholar
  39. 39.
    Kölzsch A, Alzate A, Bartumeus F et al (2015) Experimental evidence for inherent Lévy search behaviour in foraging animals. Proc R Soc B 282:2015042CrossRefGoogle Scholar
  40. 40.
    Murakami H, Niizato T, Tomaru T et al (2015) Inherent noise appears as a Lévy walk in fish schools. Sci Rep 5:10605CrossRefGoogle Scholar
  41. 41.
    Nagaya N, Mizumoto N, Abe MS et al (2017) Anomalous diffusion on the servosphere: a potential tool for detecting inherent organismal movement patterns. PLoS One 12:e0177480CrossRefGoogle Scholar

Copyright information

© ISAROB 2018

Authors and Affiliations

  1. 1.Department of BioengineeringShinshu UniversityUedaJapan

Personalised recommendations