Artificial Life and Robotics

, Volume 17, Issue 1, pp 53–58

Bifurcation analysis in a silicon neuron

  • Filippo Grassia
  • Timothée Lévi
  • Sylvain Saïghi
  • Takashi Kohno
Original Article

DOI: 10.1007/s10015-012-0016-6

Cite this article as:
Grassia, F., Lévi, T., Saïghi, S. et al. Artif Life Robotics (2012) 17: 53. doi:10.1007/s10015-012-0016-6

Abstract

In this paper, we describe an analysis of the nonlinear dynamical phenomenon associated with a silicon neuron. Our silicon neuron in Very Large Scale Integration (VLSI) integrates Hodgkin–Huxley (HH) model formalism, including the membrane voltage dependency of temporal dynamics. Analysis of the bifurcation conditions allow us to identify different regimes in the parameter space that are desirable for biasing our silicon neuron. This approach of studying bifurcations is useful because it is believed that computational properties of neurons are based on the bifurcations exhibited by these dynamical systems in response to some changing stimulus. We describe numerical simulations of the Hopf bifurcation which is characteristic of class 2 excitability in the HH model. We also show experimental measurements of an observed phenomenon in biological neurons and termed excitation block, firing rate and effect of current impulses. Hence, by showing that this silicon neuron has similar bifurcations to a certain class of biological neurons, we can claim that the silicon neuron can also perform similar computations.

Keywords

Silicon neuron Hopf bifurcation Hodgkin–Huxley equations Neuromorphic engineering 

Copyright information

© ISAROB 2012

Authors and Affiliations

  • Filippo Grassia
    • 1
  • Timothée Lévi
    • 1
  • Sylvain Saïghi
    • 1
  • Takashi Kohno
    • 2
  1. 1.Laboratoire d’Intégration du Matériau au Système, UMR CNRS 5218Université de BordeauxTalenceFrance
  2. 2.Institute of Industrial ScienceUniversity of TokyoTokyoJapan

Personalised recommendations